Month: September 2024

18.09.2024 New Publication in Antiferromagnetic Spintronics

A publication with Olena Gomonay, VK Bharadwaj and Tobias Wagner on antiferromagnetic vortex states in NiO-Fe nanostructures has been publised in Advanced Materials Interfaces.

Magnetic vortices are topological spin structures frequently found in ferromagnets, yet novel to antiferromagnets. By combining experiment and theory, it is demonstrated that in a nanostructured antiferromagnetic-ferromagnetic NiO(111)-Fe(110) bilayer, a magnetic vortex is naturally stabilized by magnetostatic interactions in the ferromagnet and is imprinted onto the adjacent antiferromagnet via interface exchange coupling. Micromagnetic simulations are used to construct a corresponding phase diagram of the stability of the imprinted antiferromagnetic vortex state. The in-depth analysis reveals that the interplay between interface exchange coupling and the antiferromagnet magnetic anisotropy plays a crucial role in locally reorienting the Néel vector out-of-plane in the prototypical in-plane antiferromagnet NiO and thereby stabilizing the vortices in the antiferromagnet.

You can find the publication under Adv. Mater. Interfaces 2024, 2400309.

02.09.2024 New Publication in Altermagnetism

A publication with Jairo Sinova and Libor Šmejkal on spin and orbital magnetism by light in rutile altermagnets has been published in npj Spintronics.

While the understanding of altermagnetism is still at a very early stage, it is expected to play a role in various fields of condensed matter research, for example spintronics, caloritronics and superconductivity. In the field of optical magnetism, it is still unclear to which extent altermagnets as a class can exhibit a distinct behavior. Here we choose RuO2, a prototype metallic altermagnet with a giant spin splitting, and CoF2, an experimentally known insulating altermagnet, to study the light-induced magnetism in rutile altermagnets from first-principles. We demonstrate that in the non-relativisic limit the allowed sublattice-resolved orbital response exhibits symmetries, imposed by altermagnetism, which lead to a drastic canting of light-induced moments. On the other hand, we find that inclusion of spin-orbit interaction enhances the overall effect drastically, introduces a significant anisotropy with respect to the light polarization and strongly suppresses the canting of induced moments. Remarkably, we observe that the moments induced by linearly-polarized laser pulses in light altermagnets can even exceed in magnitude those predicted for heavy ferromagnets exposed to circularly polarized light. By resorting to microscopic tools we interpret our results in terms of the altermagnetic spin splittings and of their reciprocal space distribution. Based on our findings, we speculate that optical excitations may provide a unique tool to switch and probe the magnetic state of rutile altermagnets.

You can find the publication under npj Spintronics 2, 46 (2024).