Month: February 2022

10.02.2022 Publication about Unconventional Antiferromagnets

 

A publication from the team of antiferromagnetic spintronics about giant and tunneling magnetoresistance in unconventional collinear antiferromagnets has been published in Physical Review X.

They presentc archetype model mechanisms for the giant and tunneling magnetoresistance effects in multilayers of such materials. These mechanisms are linked to real materials through ab-initio calculations. Further they show how their models can allow for magnetic excitations by teh spin transfer torque.

You can find the publication under PhysRevB.12.011028.

07.02.2022 Joint publication about antiferromagnetic spintronics

A joint publication from the team of antiferromagnetic spintronics about domain walls driven by elastic defects has been published in Nature Communications.

They show that the domain structure in thin films of the antiferromagnet CuMnAs is dominated by elastic defects. These defects determine the location and orientation of 90° and 180° domain walls.The results show the impact of defects on the antiferromagnetic domain structure and provides a route to optimize the performance of devices.

You can find the publication under nature.com/articles/s41467-022-28311-x.

01.02.2022 Joint Publication in antiferromagnetic spintronics

A joint publication of the Kläui - Lab together with Olena Gomonay and Jairo Sinova about magnon transport in weak antiferromagnets has been published in the Journal of Magnetism and Magnetic Materials. 

In more detail, they studied the antiferromagnet hematite with the Dzyaloshinskii-Moriya interaction (DMI). The results show that the DMI gives a new reconfigurability in the long distance magnon transport within thin films. This introduces a hysteresis in the system as a consequense of a competiotion of the Zeeman field and the effective field of the DMI.

You can find the publication under j.jmmm.2021.168631.