06.04.2024 New publication in Antiferromagnetic Spintronics

A publication with Jairo Sinova, Libor Šmejkal, Nayra Alvarez and Venkata K. Bharadwaj about Strain control of band topology and surface states in antiferromagnetic EuCd2As2 has been published in Physical Review B.

They investigate via ab initio density functional theory calculations, the effects of shear strain on the bulk and surface states in two antiferromagnetic EuCd2⁢As2 phases with out-of-plane and in-plane spin configurations. When magnetic moments are along the axis, a 3% longitudinal or diagonal shear strain can tune the Dirac semimetal phase to an axion insulator phase, characterized by the parity-based invariant 4⁢=2. For an in-plane magnetic order, the axion insulator phase remains robust under all shear strains. They further find that for both magnetic orders, the bulk gap increases, and a surface gap opens on the (001) surface up to 16 meV. Because of a nonzero 4⁢ index and gapped states on the (001) surface, hinge modes are expected to happen on the side surface states between those gapped surface states. This result can provide valuable insight into the realization of the long-sought axion states.

You can find the publication under Phys. Rev. B 109, 195117 (2024).