News

07.04.2021 The EMA 2021 Young Scientist Award goes to Libor Šmejkal

We are very proud to announce that the Young Scientist Award from the European Magnetism Association goes to Libor,  "for ground-breaking theoretical predictions of novel spin-splitting mechanisms and antiferromagnetic Hall effect in collinear antiferromagnets, which have ignited the emergent field of topological antiferromagnetic spintronics"

Libor has been in the Mainz INSPIRE team since 2015, where he is now a Research Team Leader. From 2015-2020 he was a PhD student, enrolled in Charles University Czech Republic from which he graduated in 2020. Libor has been a vital part of the INSPIRE group, both intellectually and as a team leader.

Posted on | Posted in Awards

01.06.2020 – CRC TRR288 Elastoqmat funded by the DFG

The DFG has funded the CRC TRR288 ELASTO-Q-MAT initiative. It involves the JGU (Sinova co-speaker), Goethe University Frankfurt (Roser Valenti as coordinator and speaker), the Karlsruhe Institute of Technology (Joerg Schmalian co-speaker), and the Max Plank Institutes in Mainz and Dresden. This initiative has the goal to understand, advance, and exploit new physical phenomena emerging from a particularly strong coupling between a material's elasticity and its electronic quantum phases. To this end, we will study the effects of elastic tuning and elastic response of various types of electronic order in representative classes of quantum materials that share a high sensitivity to intrinsic strain or externally applied stress fields

https://www.uni-mainz.de/presse/aktuell/11474_DEU_HTML.php

 

Posted on | Posted in Research

16.01.2020 – Joint Publication by Organic Spintronics Team in Physical Review Letters

A joint publication by the Organic Spintronics Team showing how key spintronic properties of organic molecules adsorbed at a solid surface may be precisely tuned by modifying the adsorbate structure has been published in Physical Review Letters.

DNTT-based molecules at Permalloy
Left: Illustration of spin injection from an inorganic solid substrate into an organic adsorbate layer. Center: Sketch of the adsorption geometry. Right: The adsorbates studied.

More precisely, experiments performed by our collaborators at Cambridge University (UK), show a broadening of the electron spin resonance (ESR) linewidth upon spin injection from a permalloy surface into thin films of DNTT-based organic molecules. This broadening depends sensitively on the composition and surface bonding of the adsorbate molecules.

With the support of theoretical calculations performed by collaborators at Mons University (BE), significant differences in, e.g., the spin diffusion lengths of the organic adsorbate layers can be inferred from the measured variations in ESR linewidth.

08.10.2019 – Publication by Organic Spintronics Team published in Phys. Rev. B

A publication by the Organic Spintronics Team (OST) revising the established method for calculation of molecular spin admixture parameters from first-principles electronic structure theory has been published in Physical Review B. Spin states in a semi-conductor or molecule are a mixture of up and down, because of spin-orbit coupling (SOC). Spin admixture is one of the main ways in which SOC influences the spin dynamics in a molecular material.

The revised method for calculating spin admixture improves on a number of approximations made in the previous method, resulting in greater accuracy and transferability. Still, this method relies on efficient, standard electronic structure theory only, making it easy to implement, and suitable for large-scale calculations.

Molecules in which the new spin admixture method has been evaluated. a) Benzene and thiophene, b) biphenyl, and c) M-phthalocyanines, for M = VO, Mn, Co, Cu.