Recent Publications

01.02.2022 Joint Publication in antiferromagnetic spintronics

A joint publication of the Kläui - Lab together with Olena Gomonay and Jairo Sinova about magnon transport in weak antiferromagnets has been published in the Journal of Magnetism and Magnetic Materials. 

In more detail, they studied the antiferromagnet hematite with the Dzyaloshinskii-Moriya interaction (DMI). The results show that the DMI gives a new reconfigurability in the long distance magnon transport within thin films. This introduces a hysteresis in the system as a consequense of a competiotion of the Zeeman field and the effective field of the DMI.

You can find the publication under j.jmmm.2021.168631.

28.01.2022 Publication by Ricardo Zarzuela and Jairo Sinova

A publication by Ricardo Zarzuela and Jairo Sinova about the spin-charge transport theory and spin-transfer physics in frustrated magnets has been published in Physical Review B.

They present a new theory based on the doped Hubbard model and the slave-boson formalism. The results of their work point towards possible new Hall physics thhat was previously unanticipated  in the studied frustrated materials.

You can find the publication under PhysRevB.105.024423.

12.01.2022 Joint publication with Jairo Sinova

A joint publication of the London Centre for Nanotechnology and the Catalan Institute of Nanoscience and Nanotechnology together with Jairo Sinova about Van der Waals layered systems has been published in Nature Reviews Physics.

They present fundamentals on van der Waals magnetism and spin–orbit coupling effects in 2D systems. It is discussed how the coexistance of both effects could establish new ways to engineer robust spin textures. The results will help in designing future non-volatile memory devices that utilize the unique properties of 2D materials.

You can find the publication under nature.com/articles/s42254-021-00403-5.

16.01.2020 – Joint Publication by Organic Spintronics Team in Physical Review Letters

A joint publication by the Organic Spintronics Team showing how key spintronic properties of organic molecules adsorbed at a solid surface may be precisely tuned by modifying the adsorbate structure has been published in Physical Review Letters.

DNTT-based molecules at Permalloy
Left: Illustration of spin injection from an inorganic solid substrate into an organic adsorbate layer. Center: Sketch of the adsorption geometry. Right: The adsorbates studied.

More precisely, experiments performed by our collaborators at Cambridge University (UK), show a broadening of the electron spin resonance (ESR) linewidth upon spin injection from a permalloy surface into thin films of DNTT-based organic molecules. This broadening depends sensitively on the composition and surface bonding of the adsorbate molecules.

With the support of theoretical calculations performed by collaborators at Mons University (BE), significant differences in, e.g., the spin diffusion lengths of the organic adsorbate layers can be inferred from the measured variations in ESR linewidth.

08.10.2019 – Publication by Organic Spintronics Team published in Phys. Rev. B

A publication by the Organic Spintronics Team (OST) revising the established method for calculation of molecular spin admixture parameters from first-principles electronic structure theory has been published in Physical Review B. Spin states in a semi-conductor or molecule are a mixture of up and down, because of spin-orbit coupling (SOC). Spin admixture is one of the main ways in which SOC influences the spin dynamics in a molecular material.

The revised method for calculating spin admixture improves on a number of approximations made in the previous method, resulting in greater accuracy and transferability. Still, this method relies on efficient, standard electronic structure theory only, making it easy to implement, and suitable for large-scale calculations.

Molecules in which the new spin admixture method has been evaluated. a) Benzene and thiophene, b) biphenyl, and c) M-phthalocyanines, for M = VO, Mn, Co, Cu.

26.09.2019 – Publication by Organic Spintronics Team accepted by Physical Review B

A publication by the Organic Spintronics Team (OST) revising the established method for calculation of molecular spin admixture parameters from first-principles electronic structure theory has been accepted for publication in Physical Review B. Spin states in a semi-conductor or molecule are a mixture of up and down, because of spin-orbit coupling (SOC). Spin admixture is one of the main ways in which SOC influences the spin dynamics in a molecular material.

The revised method for calculating spin admixture improves on a number of approximations made in the previous method, resulting in greater accuracy and transferability. Still, this method relies on efficient, standard electronic structure theory only, making it easy to implement, and suitable for large-scale calculations.

Molecules in which the new spin admixture method has been evaluated. a) Benzene and thiophene, b) biphenyl, and c) M-phthalocyanines, for M = VO, Mn, Co, Cu.

30.07.2019 – Publication by Organic Spintronics Team published in the Journal of Physical Chemistry C

A publication by the Organic Spintronics Team (OST) has been published in the Journal of Physical Chemistry C.
This paper presents an application of the recently developed technique for predictions of spin-admixture in molecules. As a computationally robust and efficient, "high-throughput" technique, it is used to describe general trends of in the spin admixture of several classes of molecules, from complex single-molecule magnets to organic polymers. The results emphasize the often counterintuitive variations of molecular spin-orbit coupling with molecular chemical composition and structure.

25.07.2019 – Joint publication by INSPIRE group appears as Editor’s Suggestions in Physical Review B

A joint publication by the INSPIRE group and collaborators from the Technical University of Dortmund
and Radboud University has been published in the Physical Review B as Editor's Suggestions.

This paper presents an investigation of ultrafast dynamics in antiferromagnets which is a part of a developing field of an Antiferromagnetic spintronics.By performing magneto-optical pump-probe experiments we excite coherent longitudinal oscillations of the antiferromagnetic order parameter that cannot be described by a thermodynamic Landau-Lifshitz approach. We interpret these oscillations as manifestation of an entanglement of pairs of magnons generated by femtosecond optical pulses. The results open a way to creation and manipulation of quantum entanglement in antiferromagnetic systems at macroscopic scales.

04.06.2019 – Joint publication by Organic Spintronics Team published in Nature Physics

A joint publication by the Organic Spintronics Team (OST) and collaborators from the ERC Synergy Project, the Max-Planck Institute for Polymer Research in Mainz and the University in Mons (Belgium) has been published in Nature Physics.
This paper presents a novel experimental perspective on spin and charge dynamics in high-mobility polymers, supported by calculations of the spin admixture distribution in realistic, large-scale polymer morphology models performed by the OST.

19.02.2019 – Joint publication by Organic Spintronics Team published in Nature Electronics

A joint publication by the Organic Spintronics Team and other ERC Synergy Project collaborators has been published in Nature Electronics. This paper presents experimental measurements of extremely long spin diffusion lengths in high-mobility organic polymer materials.
Modeling by the Organic Spintronics Team explains this finding in terms of the weak up-down spin mixing found in planar conjugated polymers with weak spin-orbit coupling.