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1 Undergraduate level

Problem 1 Thermodyn.

1. Two containers of equal volume are filled with an equal number of moles of two different ideal classical
gasses. The containers are in thermal contact. The molecules of one of the gasses are diatomic, the
other monoatomic. Which container has greater

(a) pressure

(b) internal energy

(c) heat capacity at constant volume

(d) entropy

2. Discuss and criticize, using examples, the following statement: ”In equilibrium, nature seeks the
equipartition of energy, in which each degree of freedom contains an average amount of energy
1
2kBT .”

Problem 2 Stat. Mech. (classical, Fermi-Dirac, Bose-Einstein Stat.)

1. Two containers of equal volume are filled with an equal number of moles of two different ideal
monoatomic classical gasses. The containers are in thermal contact. The molecules of one of the
gasses obey classical (Maxwellian, Boltzmann) statistics, while the molecules of the other gas obey
Fermi-Dirac statistics. Which container has greater

(a) pressure

(b) internal energy

(c) heat capacity at constant volume

(d) entropy

2. Answer the same questions as for previous part, but comparing classical statistics and Bose-Einstein
statistics. Do any of your answers depend on the temperature?

Problem 3 Thermodyn.

An engine with one mole of a monoatomic gas as the working fluid undergoes the following cycle:

(a) An adiabatic expansion from pressure P0, volume V0 to a volume 2V0;

(b) An isothermal compression from 2V0 to V0;

(c) At constant pressure to the original state.

1. Find the efficiency of the engine

2. What is the change in the entropy of the gas during the second leg of the cycle?

3. What is the change in internal energy of the gas in the first leg of the cycle?
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Problem 4 Maxwell relations

1. Define the thermodynamic energy function H (enthalpy), G(Gibbs free energy), and F (Helmholtz
free energy) for a homogeneous system in term of U (internal energy) and the thermodynamic
variables (S, T, P, V ). What are the natural variables for each function?

2. Derive the Maxwell relations between the partial derivatives of the thermodynamic variables. Justify
each step in words.

Problem 5 Thermodyn. (Cyclic process)

An engine with one mole of a monoatomic ideal gas as a working substance undergoes the following process:
1→ 2 isobaric expansion V0 → 2V0

2→ 3 isothermal expansion P0 → P0/2
3→ 4 isobaric compression at P0/2
4→ 1 isothermal compression at T0

1. Find the net work done in the process in terms of P0, V0

2. Find the net heat absorbed in the total process in terms of P0, V0

3. Find the entropy change in going from 1 to 2 in terms of R

4. Find the entropy change in going from 2 to 3 in terms of R

5. What is the net entropy change in the total process?

Problem 6 Heat capacity normal metal vs. superconductor

The heat capacity of a normal metal Cn at low temperatures is given by Cn = γT , where γ is a constant.
If the metal is superconducting below Tc, then the heat capacity CS in the temperature range 0 < T < Tc
is given by the relation CS = αT 3, where α is a constant. The entropy Sn, SS of the normal metal and
superconducting metal are equal at Tc, also Sn = SS as T → 0.

1. Find the relation between CS and Cn at Tc.

2. Is the transition first or second order?

Problem 7 Thermodyn.

A cylinder closed at both ends equipped with insulating (adiabatic) walls, and is divided into two parts with
a frictionless, insulating, movable piston. The gases on both sides are initially at equilibrium with identical
pressure, volume, and temperature (P0, V0, T0). The gas is ideal with CV = 3R/2 and CP /CV = 5/3. By
means of a heating coil in the gas on the left hand side, heat is slowly supplied to the gas on the left until
the pressure reaches 32P0. In terms of P0, V0 and T0

1. What is the final right hand volume?

2. What is the final right hand temperature?

3. What is the final left hand temperature?

4. How much heat must be supplied to the gas on the left?

5. How much work is done on the gas on the right?
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6. What is entropy change of the gas on the right?

7. Compute the entropy change of the gas on the left.

Problem 8 Carnot cycle

This problem refers to a classical monoatomic gas.

1. On a T − S digram, draw an isothermal expansion, an isobaric expansion, and a constant volume
process.

2. Draw a Carnot cycle on a T − S diagram. Assume that the Carnot cycle operates between T1 and
T2, with T1 > T2.

3. Derive the expression for the efficiency of a Carnot cycle using this T − S diagram.

Problem 9 Van der Waals gas

The van der Waals equation of state for a mole of gas is given by (P + a/V 2)(V − b) = RT , where V is
the molar volume of the gas.

1. Define the critical point Tc, Vc and Pc in terms of (∂p/∂v)T and
(
∂2P/∂V 2

)
T

.

2. Express a and b in terms of Tc and Vc.

3. Express Pc in terms of Tc and Vc.

4. Calculate the compressibility κT = −V −1(∂V/∂P )T and the thermal expansion coefficient β =
V −1(∂V/∂T )P for the van der Waals gas. What do these quantities do at the critical point?

Problem 10 Clausius-Clapeyron

1. If lS is is latent heat of sublimation per mole, and the vapor phase can be considered to be an ideal
gas, show by using Clausius-Clapeyron equation that

dP

P
=

lS
RT 2

dT, and lS = −Rd(logP )

d(1/T )

where the volume occupied by the solid can be neglected compared to that occupied by the vapor.

2. Iodine vapor can be assumed to be an ideal diatomic gas with constant CP . At 301K, the vapor
pressure is 51.5N/m2 and at 299K it os 43.5N/m2. Compute the latent heat of sublimation at
300K.

3. Assuming constant latent heat, calculate the vapor pressure at 305K, assuming no phase transition
exist in the intervening temperature range.

Problem 11 Heat engine

1. A body of finite, temperature independent, heat capacity is originally at temperature T1 which
is higher than the temperature of a heat reservoir T2. Suppose that a heat engine operates in
infinitesimal cycles between the body and the reservoir, until it lowers the temperature of the body
from T1 to T2 extracting Q (heat) and does work W during the process. Prove that the maximum
amount of work obtainable is

Wmax = Q− T2 (S1 − S2) ,

where S1 − S2 is the entropy decrease of the body.
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2. Two identical bodies, each of constant heat capacity C are at the same initial temperature Ti. A
refrigerator operates between these two bodies until one of them is cooled to T2. Calculate using
the same principle as the one in the previous question the final temperature of the high temperature
body in terms of Ti and T2. Show that the minimum amount of work needed is

W = C

(
T 2
i

T2
+ T2 − 2Ti

)
.

Problem 12 Maxwell’s Relations

1. Write down differential equations for the internal energy U , the enthalpy H, the Helmholtz free
energy F , and the Gibbs function G.

2. Derive, showing your reasoning the four Maxwell’s Relations.

3. Show that (
∂U

∂V

)
T

= T

(
∂P

∂T

)
V

− P.

4. For a van der Waals gas, show that the internal energy increases as the volume increases. The van
der Waals equation of state is

P =
RT

V − b
− a

V 2
.

Problem 13 Thermodyn.

1. A membrane separates two chambers of equal volume. Only one side contains gas, the other is a
vacuum. The system as a whole is thermally isolated from the world, and its walls are rigid. If
the membrane is burst (neglect the energy associated with the membrane) which of the following
quantities will remain unchanged after the system adjusts to the doubled volume?

(a) total entropy S

(b) total particle number N

(c) total energy E

(d) temperature T

(e) pressure P

(f) chemical potential µ

2. During which periods of time can one describe the entropy of the system as a unique function of
energy, volume, and particle number? Comment on your answers for each part.

(a) Initially.

(b) During the expansion.

(c) After the adjustment to the doubled volume.

Problem 14 Thermodyn. (Cyclic process)

What is the thermal efficiency of an engine that operates by taking an ideal gas the following cycle?

1. Start with n moles at P0, V0, T0.

2. Change to 2P0, V0, at constant volume.
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3. Change 2P0, 2V0, at constant pressure.

4. Change to P0, 2V0, at constant volume.

5. Change P0, V0, at constant pressure.

Problem 15 Entropy of water with heat source

Heat is added to 0.5kg of ice at 0◦C until it is all melted. If you don’t know the heat of melting, call it l.

1. What is the change in entropy of the water?

2. If the source of heat is a very massive body at a temperature of 20◦C, what is the change in entropy
of this body?

3. What is the total change in entropy of the water and the heat source?

Problem 16

A system possesses three energy levels E1 = ε, E2 = 2ε, E3 = 3ε with degeneracies g (E1) = g (E2) = 1
and g (E3) = 2. Write down

1. The partition function for the system

2. The energy of the system

3. The heat capacity of the system

4. What is the ”low temperature” temperature dependence of the heat capacity?

5. What is the ”high temperature” temperature dependence of the heat capacity?

Problem 17 Spin waves

For a ferromagnetic solid at low temperatures, the quantized waves of magnetization (spin waves) have
their frequency ω related to their wave number k according to ω = Ak2 where A is a constant.

1. For a 3-dimensional solid, write down the density of states D(ω) for such an excitation.

2. Write an expression for the energy density for the spin waves.

3. Determine an expression for the heat capacity, and what is its temperature dependence at low
temperatures?

4. At sufficiently low temperatures, which terms should give the largest contribution to the specific
heat: phonons, electrons, or spin waves? Which would give the smallest contribution?

Problem 18 Rotation of diatomic gas

According to quantum mechanics, the molecules of a diatomic gas possess rotational energy levels

er = ~2r(r + 1)/2I, wherer = 0, 1, 2, . . .

and I is a constant, the level r being (2r + 1)-fold degenerate.

1. Write down the expression for the partition function of the rotational motion.
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2. Using the previous part find the molar rotational heat capacity of the gas at low and at high
temperatures.

3. For CO, the constant, I has a value 1.3 × 10−39 gm · cm 2. What is the molar rotational heat
capacity for CO at room temperature?

Problem 19 Thermodyn.

Consider an ideal gas.

1. Show that the heat transferred during an infinitesimal quasi-static process c an be written as

dQ =
CV
R
V dP +

CP
R
PdV

2. Apply the above equation to show that PV γ = const. for an adiabatic process. What is γ?

Problem 20 Cyclic processes

A vessel contains 10−3 cubic meters of helium gas at 3K and 103Pa. Take the zero of internal energy
of helium to be at this point. You may assume that helium acts as a monoatomic ideal gas. R =
8.31 J/mole-K .

1. The temperature is raised to 300K at constant volume. How much heat Q is absorbed, and what is
the internal energy of helium?

2. The helium is now expanded adiabatically to 3K. What ls the final volume? How much work W is
done by the gas and what is the new internal energy of the gas?

3. The helium is now compressed isothermally to its original volume. What are Q, W , and ∆U during
this process?

4. Sketch the process on a PV diagram. What is the efficiency of the cycle? Compare this efficiency
to that of an ideal Carnot cycle operating between the two temperature extremes.

Problem 21

On a mountainside, air is enclosed in a limp, massless, plastic bag and then is carried down 100m, in a
time too short for heat to flow across the plastic bag, but slow enough that the pressure inside the bag is
in equilibrium with its surroundings at all times. If air weights 29.3 g / mole , and has CP = 29.3J/K,
by how much does the temperature in the air change? Give a brief explanation for the sign of the rise or
fall in temperature.

Problem 22 Surface tension of non-interacting spin

1. Find the Fermi energy at T = 0, εF , of a gas of N noninteracting spin one-half particles constrained
to move in two dimensions within an area A.

2. Recall that the surface tension, σ, in two dimensions is analogous to pressure in three dimensions so
that the surface tension contribution from a particle in state n is given by −∂εn/∂A. Show that the
surface tension at T = 0 is given by NεF /2A.
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Problem 23 Thermodyn.

Derive the general expression for CP − CV in terms of αT , KT where αT is the isothermal expansion
coefficient and KT is the isothermal compressibility coefficient of the material. Prove that (CP − CV ) /T
must approach zero as T approaches zero.

Problem 24 Phase transition

The work done by a long solenoid in magnetizing a thin rod shaped magnetic sample inside it is

δWsol = µ0V HadM

here µ0 is the permeability of free space, V the sample volume, Ha, the applied field and M the magne-
tization of the sample (magnetic moment per unit volume), The magnetic induction inside the sample is
given by

B = µ0 (Ha +M) = µ0(1 + χ)Ha

where χ is the magnetic susceptibility of the material. For most ordinary metals in the normal state, χ is
rather small. (For this problem it can be set equal to zero.) If the metal goes into the superconducting state,
however, it would usually exhibit a Meissner effect which means that B = 0 inside the superconductor,
i.e. χ = −1. At temperatures below the superconducting transition temperature, T < Tc, an applied field
Ha = Hc, (the critical field) is sufficient to destroy superconductivity. The phase boundary between the
superconducting state and the normal state can be approximated by

Hc = H0

[
1− (T/Tc)

2
]

1. For this phase boundary in the Ha, T plane. Write the defining expression for the magnetic Gibbs
free energy G(T, P,Ha) and its differential.

2. What is the relationship between GN (T, P0, Hc) and Gs (T, P0, Hc), the Gibbs free energies for the
normal and superconducting phases along this phase boundary. P0 is an arbitrary, fixed pressure at
which the relation for Hc, given above was determined. Find the relationship between GN (T, P0, Ha)
and GN (T, P0, 0) and between GS (T, P0, Ha) and GS (T, P0, 0).

3. Use the results of the previous parts to show that

(a) there must be a jump discontinuity in the heat capacity of a metal when it undergoes the
superconducting transition at T = Tc. (Relate this jump to dHc/dT at T = Tc, Ha = 0);

(b) there must be a latent heat of transformation when the superconductor is driven from the
superconducting state to the normal state by a magnetic field applied at a constant temperature
T . (Relate this latent heat to the slope of the phase boundary as a function of temperature.)

Problem 25 First law of thermodynamics

Starting from ideal gas law and the first law of thermodynamics, derive the relation between pressure P
and volume V for an adiabatic process in terms of γ ≡ (cV +R)/CV = cP /CV .

Problem 26

1. Assuming that water is incompressible, estimate the change in Gibbs energy ∆G in joules of 100 cm 3

of water at 25◦ when the pressure is changed from 1 atm. to 100 atm. (Note that 1 atm. =
1.013× 105N/m2.)
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2. In fact the volume of a sample does change when it is subjected to pressure, and so we ought to
see how to take the effect into account, and then judge whether it is significant. The volume varies
in a way that can be determined by specifying the isothermal compressibility κ = −V −1(∂V/∂P )T ,
and we may assume that this is virtually constant over a pressure range of interest. Deduce an
expression for the Gibbs energy Gf at the pressure pf in terms of its value Gi at the initial pressure
pi, the original volume of the sample Vi, and the compressibility κ. Take the limit of κ→ 0 in your
expression for ∆G ≡ Gf −Gi, and show that it reduces to the expression used in the first part.

Problem 27

A hydrogen atom in equilibrium with a radiation field at temperature T can be in its ground state orbital
level (the ”1− s” level, which is two-fold spin degenerate with energy ε0), or it can be in its first excited
state energy level (the ”2− p” level, which is six-fold degenerate with energy ε1). For the purpose of this
problem we shall assume that this atom does not have any other excited states (i.e., no 2s level and no
levels with the principal quantum number n > 2).

1. (a) What is the probability that the atom will be in an ”orbital s-state”?

(b) What is the probability that the atom will be in an ”orbital p-state”?

(c) What is the probability that the atom will be in an ”orbital s-level”?

(d) What is the probability that the atom will be in an ”orbital p-level”?

2. If the temperature is such that kBT = ε1 − ε0, then show and state which of the two orbital levels
is occupied more.

3. Derive an expression for the mean energy of the atom at temperature T and obtain the limiting
value of this mean energy as T →∞.

4. Derive an expression for the entropy of the atom at temperature T and also, from the definition of
entropy, state what should be the values of the entropy for this atom in the limits of T → 0 and T →
∞. (If you do not know the answer for the last question, you may obtain the limits from your general
expression of entropy.)

Problem 28 Clausius-Clapeyron

Consider a single component system with two phases 1 and 2

1. Starting from the condition of equilibrium for the two phases that the Gibbs free energies g1 and g2

are the same, i.e. g1 = g2, derive the Clausius-Clapeyron equation:

dP

dT
=

l1,2
T∆v

where l1,2 is the heat absorbed when one mole of phase 1 is transformed to phase 2, ∆v = v2− v1 is
the corresponding volume change, and P and T are, respectively, the pressure and temperature of
the system.

2. Using the above equation show that the slope of any vapor pressure curve (liquid or solid) is positive.

3. Show that the melting curve for water has a negative slope.

4. The slope of a vapor pressure curve near the critical point is finite. Using the above equation find
the expected numerical value for l1,2 at the critical point.
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Problem 29 Three gas system

Consider a thermally isolated cylinder of length l and area S shown in the figure. The piston is semi-
permeable, allowing gas A only to pass through. The cylinder contains classical ideal gases A, B and C,
so that gas B is contained on the left, and gas C on the right, as shown. The cylinder and piston have
small heat capacity compared to the gases.

1. Find the equilibrium piston position, x0, given the mole amounts of the three gases, NA, NB, NC .

2. If the piston is moved adiabatically from its equilibrium position (x0), find the temperature vs. x,
in terms of the initial temperature T0, and the constant volume molar heat capacities of the three
gases CA, CB, and CC . (Assume that the three gases attain a mutual temperature.)

3. What is the total entropy change in the process (S vs. x)?

4. For the system of B molecules only, what is the entropy change (SB vs. x)?

Problem 30 Non-interacting fermions

Consider a system of N non-interacting fermions for which the single-particle density of states N (ε) is a
sum of delta functions:

N (ε) = N0

∞∑
n=0

δ (ε− nε0)

where ε0 is a constant of the dimension of energy, and N0 is proportional to the total volume V of the
system and is otherwise a dimensionless constant.

1. What is the relation which determines the chemical potential µ of this system as a function of N ,
V , and the temperature T?

2. Sketch the dependence of µ on N at fixed V and T assuming that T � ε0, so one is in the low
temperature regime (but not exactly at T = 0). You may sketch the inverse function N(µ) if you so
choose to do so.

3. What is the relation which determines the total energy E of the system as a function of T , V , and
µ?

4. Use the above relations to show that the total heat capacity at constant volume of the system is
given by:

CV =
N0ε

2
0

4kBT


∞∑
n=0

n2

cosh2
[

1
2β (nε0 − µ)

] −
[∑∞

n=0
n

cosh2[ 12β(nε0−µ)]

]2

∑∞
n=0

1
cosh2[ 12β(nε0−µ)]



10



1 Undergraduate level

[Note: coshx ≡ 1
2 [ex + e−x].]

Problem 31

Imagine a set of N independent spins, with fixed positions and J = 1. In a uniform magnetic field, the
spin energies are E = µHS, where s = (1, 0,−1) labels the spin component along the magnetic field, H is
the applied field, and µ is the magnetic moment. N is a very large number.

1. Find a general form for n+, n0, and n−, the expectation values for the numbers of spins with each of
the three spin components, at a given temperature and field. Do not assume the high-temperature
limit here.

2. What is 〈E〉, the total energy expectation value, in the high temperature limit (first temperature-
dependent term)?

3. Find an expression for the entropy S, in the high-temperature limit. Here we are looking for two
terms, the temperature-independent T ≈ ∞ term and the first temperature-dependent term. (You
may need Stirling’s approximation, logN ! ≈ N logN −N , although one can do the problem without
needing this formula.)

4. From the previous result, find the temperature dependence on the field H, as H is varied in an
adiabatic process. For decreasing H, what is the process called?

Problem 32 Laws of Thermodyn.

A particular system obeys the following relations: For internal energy;

U = PV

and for the pressure,
P = BT 2

where V is volume, T absolute temperature, and B is a constant.

1. Find the fundamental equation of this system, that is how the entropy S depends on U and T and
an arbitrary constant Sc.

2. Discuss and show whether S obeys the Third Law of Thermodynamics.

3. Calculate how much heat is transferred into the system when the volume changes from V0 to 2V0

during an isobaric process (P = P0).

4. Calculate the amount of work done by the system when V changes from V0 to 2V0 under isobaric
condition (P = P0).

5. Show that your results from the previous two parts obey the First Law of Thermodynamics.

Problem 33 Relativistic gas

Consider an extremely relativistic gas consisting of weakly interacting N identical monoatomic molecules
with energy momentum relationship E = cp, where c is the speed of light. The gas is confined to a volume
V and is in thermal equilibrium at temperature T .

1. Calculate the partition function ZN (V, T ) for the gas.

2. Calculate the Helmholtz free energy F .

3. Derive an equation of state of the gas.
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Problem 34 Thermodyn.

Consider the properties of a rubber band with tension λ(x, T ), extension x, entropy S, and temperature
T .

1. Find the work done by the rubber band when stretched from xx to x+ dx.

2. Formulate the first law of thermodynamics for the system.

3. Show that (
∂S

∂x

)
T

= −
(
∂λ

∂T

)
x

.

4. Show that (
∂x

∂S

)
T

=

(
∂x

∂λ

)
T

(
∂T

∂x

)
λ

.

5. If now the rubber band obeys Hooks’s law as an ideal spring, with the force constant K independent
of temperature, what is implied about the functional form of S = S(x, T )?

Problem 35

A horizontal insulating cylinder contains a frictionless, thermally insulating piston. On each side of the
piston there are V0 cubic meters of a monoatomic ideal gas at a pressure P0 and absolute temperature T0.
The gas on the left hand side is heated slowly until the piston has compressed the right hand side to a
pressure of 32P0.

1. How much work is done on the gas on the right hand side? Express the answer in units of P0V0.

2. What is the final temperature of the gas on the right hand side in units of T0?

3. What is the change in entropy for the gas on the right hand side in units of the number of moles
times the gas constant, nR?

4. What is the final temperature of the gas on the left hand side in units of T0?

5. How much heat is added to the gas on the left hand side? Express the answer in units of P0V0.

Problem 36 Liquid at low temperatures

The relation between the frequency ν and the wavelength λ for surface tension waves on the surface of a
liquid of density ρ and surface tension σ is

ν2 =
2πσ

ρλ3

Use a method analogous to the Debye theory of specific heats to find a formula, analogous to the Debye
T 3 law, for the temperature dependence of the surface energy E of a liquid at low temperatures. The
surface tension of liquid helium at 0K is 0.352× 10−3N/m and its density is 0.145g · cm −3. From these
data estimate the temperature range over which your formula for E(T ) is valid for liquid helium, assuming
that each helium atom in the surface of the liquid possesses one degree of freedom. You may assume∫ ∞

0

x4/3

ex − 1
dx = 1.68.

Bolzmann’s constant kB = 1.38× 10−16 erg ·K−1

Avogadro’s number N = 6.02× 1023 mole −1

Planck’s constant ~ = 1.05× 10−27 erg · sec
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Problem 37 Ideal gas

One liter of an ideal gas under a pressure of 1 atm is expanded isothermally until its volume is doubled.
It is then compressed to its original volume at constant pressure and further compressed isothermally to
its original pressure. Plot the process on a P − V diagram and calculate the total work done on the gas.
If 50J of heat, were removed during the constant- pressure process, what would be the total change in
internal energy?

(
1 atm = 1.013× 105N/m2

)
Problem 38 Van der Waals gas

1. For a general (non-ideal) gas, derive the formula

dE = nCV dT +

[
T

(
∂P

∂T

)
V

− P
]
dV.

CV is the constant-volume specific heat, assumed here to be a constant, and n denotes the number
of moles of gas. You may want to use the Maxwell relation,(

∂S

∂V

)
T

=

(
∂P

∂T

)
V

.

2. For the van-der-Waals equation of state,(
P +

n2a

V 2

)
(V − b) = nRT,

derive a specific form for dE given above. CV is again a constant (valid, presumably, over a limited
temperature range).

3. Find, for the van-der-Waals gas, the constant-pressure specific heat CP (T, V ), using your result from
the previous part. Note that CP is not a constant, but show that it reduces to the expected form
for the ideal gas case.

Problem 39

In an isolated system of N identical particles (N large) each particle can be in two energy states: ε1 =
0 and ε2 = ε > 0. The total energy of the system is E. Find, as a function of E,

1. The entropy of the system.

2. The temperature of the system.

Note that log n! = n log n− n

Problem 40 Two phase system

A substance is found to have two phases N and S. In the normal state, the N phase, the magnetization
M is negligible. At a fixed temperature T < Tc, as the external magnetic field H is lowered below the
critical field

Hc(T ) = H0

[
1−

(
T

Tc

)2
]

the normal state undergoes a phase transition to a new state, the S phase. In the S state, it is found that
B = 0 inside the material. The phase diagram is shown below.
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1. Show that the difference in Gibbs free energies (in cgs units) between the two phases at temperature
T ≤ Tc, is given by

GS(T,H)−GN (T,H) =
1

8π

[
H2 −H2

c (T )
]
.

(You may express your answer in another system of units. The Gibbs free energy in a magnetic field
is given by G = U − TS −HM .)

2. Compute the latent heat of transition L from the N to the S phase.
[Hint: one approach is to consider a ”Clausius-Clapeyron” type of analysis. ]

3. At H = 0, compute the discontinuity in the specific heat as the material trans- forms from the N to
the S phase.

4. Is the phase transition first or second order at H = 0? What is the basis of your conclusion?

Problem 41

A thermally conducting, uniform and homogeneous bar of length L, cross section A, density ρ and specific
heat at constant pressure cP is brought to a steady state by contact at one end with a hot reservoir at a
temperature TH and at the other end with a cold reservoir at a temperature TC . The bar is removed from
the reservoirs, thermally insulated and kept at constant pressure.

1. Find the equilibrium temperature Tf of the bar.

2. Show that the change in entropy of the bar is

∆S = CP

(
1 + log Tf +

TC
TH − TC

log TC −
TH

TH − TC
log TH

)
,

where CP = cPρAL. Assume cP and thermal conductivity are constants.

Problem 42 Harmonic oscillator

1. Show that the Hamiltonian of an LC circuit is that of a harmonic oscillator. Identify the resonance
frequency, and obtain the discrete energy levels of this system if it is quantized.

2. Calculate the mean energy of this system if it is at thermodynamic equilibrium with its surroundings
which are at an absolute temperature T .

14



1 Undergraduate level

3. Show how the root-mean-square voltage Vrms, across the capacitor of this circuit can be used as a
thermometer to measure the absolute temperature T of its surroundings, by showing that Vrms is a
monotonically increasing function of T and therefore Vrms can uniquely determine T . Neglect any
temperature dependence of L or C.

Problem 43

Find the change of temperature of a quantity of water carried by a downward current to a depth of 1km
in a lake at 27◦C. For water at this temperature

1

V

(
∂V

∂T

)
P

= 0.00013deg−1

and you may assume: ”no heat exchange” (∆S = 0).
Given: g = 980 cm /s2, and ρ = 1gm/ cm 3, cP ∼ 1 cal/g · deg for water, and 1 cal = 4.18× 107 erg .

Problem 44

Measuring the tension J of a rubber band stretched at a constant length l, it is found that J = AT , where
A is a positive constant depending only on l; T is the absolute temperature.

1. Show that the internal energy U is a function of the temperature only.

2. Show that the entropy S decreases with increasing length at constant temperature.

3. When the rubber band is stretched adiabatically, does the temperature increase, decrease or stay
unchanged, and why?

Problem 45

The molecules of one mole of a certain gas consist of two different atoms, each of zero nuclear spin, bound
together. Measurements of the specific heat of this material, over a wide range of temperatures, give the
graph shown below. (The values marked on the vertical scale correspond to the height of the curve in
each of the plateau regions.)

1. Describe the physical reason for each of the three different plateaus in the figure.
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2. At temperature T0, the gas undergoes a phase transition directly to an ideal classical solid. Sketch
the typical behavior of CV below T0, down to 0K, including the magnitude just below T0 and the
temperature dependence just above the absolute zero temperature, and give physical justifications.

3. Given the first excited state of the rotational spectrum of this molecule is at the energy kTe above
the ground rotational state, and Te = 64K, calculate from basic theory the rotational contribution
to the specific heat capacity per molecule (in units of the Boltzmann constant kB) at T = 10K and

T = 500K. (Note that Te = 2θr, where θr = ~2
2IkB

is the rotational temperature, and you may make
reasonable approximations in answering this part. If you don’t have a calculator for the explicit
evaluations, indicate what numerical expressions you would have to compute with a calculator.)

Problem 46

A gas is described by the following equations of state

P =
U

3V
, U = bV T 4

where b is a constant and P , U , V , and T are the thermodynamic pressure, internal energy, volume and
temperature.

1. Determine the entropy S as a function of U and V .

2. Determine the functional relationship between P and V along an adiabatic path.

3. Determine the functional relationship between P and V along an isothermal path.

4. Determine the work done by the system as it expands from an initial volume V0 to a final volume
2V0 along an isothermal path with temperature T0.

5. Determine the heat added to the system as it expands from an initial volume V0 to a final volume
2V0 along an isothermal path with temperature T0.

Problem 47 Gas of non-interacting Bose particles

Consider a gas of non-interacting Bose particles with spin S = 0 and mass m. In the ultrarelativistic limit,
one can approximate the dispersion relation by E(p) = cp.

1. Write down a general integral expression for the statistical average of the total number of particles
not in the zero-energy ground state.

2. Determine the Bose-Einstein condensation temperature T0 of the gas as a function of the gas density
ρ = N/V .

3. Determine the fraction N0/N of the particles in the zero-energy ground state as a function of tem-
perature T and density ρ.

You may find the following formula useful:∫ ∞
0

zx−1

ez − 1
dz = Γ(x)ξ(x)

x 3/ 2 5/ 2 3 5

Γ
√
π / 2 3

√
π / 4 2 24

ξ 2.612 1.341 1.202 1.037
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Problem 48

A chamber, that is adiabatically isolated from the outside universe, is partitioned into two volumes V0

and ∆V . Initially the volume V0 is filled with N particles of a gas and the volume ∆V is completely
empty. The partition between the volumes V0 and ∆V is punctured so that the gas freely expands into
the additional volume ∆V so that its final volume is V0 + ∆V .

1. Assuming ∆V is small, calculate a general expression for the change in temperature ∆T . Express
your answer in terms of the following thermodynamic quantities which you can assume to be known.
Thermal Expansion: α = 1

V

(
∂V
∂T

)
P

Isothermal Compressibility: κT = − 1
V

(
∂V
∂P

)
T

2. Evaluate your expression for ∆T in the previous part for a monoatomic ideal gas.

Problem 49

An ensemble of non-interacting pairs of Ising spins is in a magnetic field h and at temperature T . Each
spin variable szi can only take on values szi ± 1. The two spins within each pair interact according to the
Hamiltonian

H = −Jsz1sz2 − µBh (sz1 + sz2) , with J > 0

1. Enumerate the possible states of a single pair and compute their corresponding energies.

2. Derive an expression for the average value of a spin, 〈szi 〉 , (i = 1, 2) as a function of J , T and h.

3. Given the above model, determine whether there exists a temperature Tc for which 〈szi 〉 can be
non-zero at h = 0. Evaluate T .

Problem 50

1. Show that the number of photons, N , in equilibrium at temperature T in a cavity of volume V is
proportional to

V

(
kBT

~c

)3

2. Show that the heat capacity for this system is proportional to T 3.

Problem 51 Stat Mech

Consider a system of non-interacting spin 1/2 fermion particles, electrons, adsorbed on a surface with
specific adsorption sites. At each site, an electron can occupy any one of three distinct orbital states
corresponding to energies ε1, ε2, and ε3(ε1 > 0, ε2 > 0, and ε3 > 0) . The surface is in contact with a gas
of electrons that acts as a thermal and particle reservoir.

1. Determine a general expression for the average number of particles adsorbed per site if the reservoir
is at a temperature T and has a chemical potential µ

2. If ε1 < ε2 and ε2 = ε3 within what range of values must µ(T = 0) lie if at T = 0 the average number
of electrons adsorbed per site is 2.

3. If the average number of electrons adsorbed per site is maintained at 2 for small nonzero tempera-
tures, determine the precise limiting value of µ as T approaches zero.
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Problem 52 Thermo

Consider the following equations of state for an ideal gas:

U = cNkBT, PV = NkBT

where c is a constant.

1. Determine the entropy as a function of U, V, and N . Let S = 0 when U = Nu0 , and V = Nv0 ,
where constants u0 and v0 are the energy/particle and volume/particle respectively.

2. Determine the entropy as a function of P , T , and N . Let S = 0 when T = T0 and P = P0.

3. 1. If the number of particles N varies, then calculate the chemical potential in terms of P, T , P0,
T0, and constants c and kB .

Problem 53 Thermo

When we apply a magnetic field H to a solid body, it is permissible under many circumstances to neglect
the −PdV term in comparison to the HdM term in the fundamental thermodynamic equation. Hence for
a magnetizable solid body we can simply write

dU = TdS +HdM

where the magnetization M = χH is related to H through the susceptibility χ = χ(H,T ). Let CH denote
the heat capacity at constant field H,CM the heat capacity at constant M, and define the differential
isothermal susceptibility as Π = (∂M/∂H)T .

1. Find an expression for CH − CM in terms of T,H, χ, and Π

2. Show for a paramagnetic material, where χ = α/T with a = constant, that the expression in the
first part reduces to CH − CM = MH/T .

Problem 54 Stat Mech

1. Shown in the figure below is a set of available single-particle states and their energies. By properly
filling these single-particle states, find the energies and degeneracies for a system of four identical
non-interacting particles in the systems lowest energy level and in its first excited energy level,
assuming that these particles are:

• identical spinless bosons,

• identical spinless fermions.

2. At a finite temperature T, calculate the ratio r = P1/P0, again for the two cases defined above. P1

is the probability for finding the four-particle system in the first excited energy level, and P0 is the
probability for finding the same system in the lowest energy level.

Problem 55 Thermo

One is given two containers. Each contains N moles of water at the same pressure. Initially the temperature
of the water in each container is T1, and T2 (T2 ≥ T1). The entire system is kept at a constant pressure
and is thermally isolated from the surroundings. The heat capacity of water per mole, CP , can be taken
to be a constant for T1 ≤ T ≤ T2. First, consider a process when the two bodies of water are brought into
thermal contact so they can exchange heat between themselves.
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1. Calculate the final temperature of the resulting mixture.

2. Calculate the change in the total entropy of the two bodies of water.

3. Now, determine the theoretical maximum amount of total work that could have been obtained from
this system.

Problem 56 Thermo

During a process in which the volume of a system of N molecules is expanded from V1 to V2, the temperature
is observed to decrease linearly with the volume from T1 to T2, that is,

T = T1 +A (V − V1)

where, A = T2−T1
V2−V1 Express the heat transfer during this process in terms of definite integrals of

CP =
T

N

(
∂S

∂T

)
P,N

, α =
1

V

(
∂V

∂T

)
P,N

, κT = − 1

V

(
∂V

∂P

)
T,N

which are assumed to be known functions of T and V .

Problem 57 Stat Mech

A simple statistical mechanical model can be used to describe thermal denaturation (strand separation)
of DNA molecules. The DNA molecule is represented as a chain of two kinds of base pairs, NA pairs of
type A and NB pairs of type B, in a given sequence. Each pair can be in two states (n = 0, 1), ether
bound (n = 0) or unbound (n = 1), as shown in the figure. The average fraction of unbound pairs (f) can
be easily measured experimentally.

1. Sketch qualitatively, using only physical arguments, f as a function of temperature T for a pure
A (NB = 0)and a pure B (NA = 0) DNA. Be sure to state the limiting values at T = 0 and ∞
explicitly.

2. Derive the partition function for a single DNA molecule assuming that the energy εn of each base pair
is independent of the state of other pairs, and that the unbinding energy depends only on whether
the base is of type A or B,

εn =

{
0, if n = 0
∆A or ∆B, if n = 1
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3. Derive a closed analytical expression for f as a function of T and c ≡ NA/N where N = NA +NB .
[Hint: You may find the following identity useful: e−x/ (1 + e−x) = 1/ (1 + ex) = 1

2(1− tanh(x/2))]
,

4. Using the result in the previous part and the phenomenological form β∆A = aA (TA − T ) and
β∆B = aB (TB − T ), indicate the phenomenological parameters aA, aB, TA and TB in your figures
in the first part, and sketch f(T ) assuming c = 1/4, TB = 1.5TA, a

−1
A = 0.1TA, and a−1

B = 0.1TB.

Problem 58 Stat Mech

Consider a classical system of N point particles of mass m in a volume V at temper- ature T. The particles
interact through a two-body repulsive central potential

φ(r) = φ0

(r0

r

)n
where φ0 > 0, r0 > 0, and n > 0.

1. Calculate the partition function Z(T, V ) for this system and show explicitly that Z(T, V ) =
Z0(T, V )q(TV n/3), where Z0 is the ideal gas partition function and the function q(x) (which you can
not express in a closed form!) depends on T and V only through x = TV n/3.

2. Given the result of the previous part, show that the internal energy U and the pressure P are related
as U = U0 + 3

n (P − P0)V , where the subscript 0 refers to n the ideal gas.

3. What is the potential φ(r) as n→∞? Explain the result obtained in the previous part in this limit.
Is it correct?

Problem 59 Thermo

A material, in a certain range of temperature T and pressure P , has a volume expansivity (or thermal
expansion coefficient) given by

α = (R/Pv) +
(
a/RvT 2

)
and an isothermal compressibility given by

κT = [Tf(P ) + (b/P )]/v

where R, a, and b are (non-dimensionless) constants independent of pressure P the specific volume v ≡
V/N , and the absolute temperature T, and f(P ) f(P ) is an unknown function of P .

1. Determine f(P ).

2. Determine v(P, T ).
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Problem 60 Stat Mech

The ground state density of a free-electron Fermi gas is conveniently parametrised by specifying the volume
per conduction electron according to

4

3
πr3

s ≡
V

N

1. Find the Fermi wavevector, kF in terms of the electron density parameter rs.

2. Find expressions for the following quantities, in terms of the dimensionless density parameter (rs/a0),
where a0 is the Bohr radius, and with the units indicated:

• the Fermi momentum kF ( in A ) , [Given: 1a0 = 0.529 A].

• the Fermi energy εF (in eV ), [Given: 1 Rydberg = 13.6 eV ]

• the Fermi temperature TF (in K). [Given: 1 eV = kB x 1.16 x 104K.]

In each case, a detailed expression for the coefficient involved should be found so that if you had a
calculator you would be able to evaluate the coefficient numerically.

3. Starting from the equation of state

PV =
2

3
〈E〉

where εF is the total internal energy of the gas, express the T = 0 value of the bulk modulus

B ≡ −V
(
∂P

∂V

)
T,N

which is the inverse of the isothermal compressibility κT ≡ − 1
V (∂V/∂P )T,N V in terms of the Fermi

energy εF and the density parameter rs.

Problem 61 Thermo

Using some simple reasoning, obtain the functional dependencies of the low- and high- temperature be-
haviors (i.e., for T � εF and T � εF ) of the following quantities for a three-dimensional ideal Fermi gas,
in terms of N (the total number of particles), T (the absolute temperature), εF (the Fermi energy), and
kB (the Boltzmann constant):

1. the total specific heat at a constant volume CV ,

2. the total entropy S,

3. the total internal energy E. In each expression, you may introduce any number of undetermined
numerical constants, but not any un-determined dimensional quantities. For each of the three
physical quantities listed above, drew also a qualitative sketch of its T-dependence from T = 0 up to
a temperature T � εF , based on the low- and high-temperature behaviors of it you have deduced.

Problem 62 Thermo

Over some range of parameters a system is described by the following fundamental equation:

S = Au1/3v1/3

where s, u, and v are the molar entropy, molar energy, and molar volume, respectively and A is a constant.
N moles of this fluid is initially confined to a volume Vi at pressure Pi. It then expands reversibly at
consonant temperature T0 to a final volume Vf > Vi.
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1. Determine the final pressure Pf in terms of Vi, Vf , and Pi.

2. Determine an expression for either the chemical potential µ or an expression for the change in chem-
ical potential, dµ, and explain whether the chemical potential of this system increases or decreases
for this process?

Problem 63 Thermo

For a system in an electric field E the differential of the internal energy is

dU = TdS + EdΠ

where Π is the electric polarization of the system. Define the generalized Helmholtz free energy F (T,Π),
the generalized enthalpy H(S,E) and the generalized Gibbs free energy G(T,E) for this system in terms
of the variables T, S, E, and Π. Write the differentials for these thermodynamic functions and use these
to find the four Maxwell relations between derivatives of these variables. (Note: for this particular system
the pressure P and volume V are not relevant variables, so don’t include them in your work.)

Problem 64 Stat Mech

For an isotropic three-dimensional solid whose velocity of sound c is the same for all three modes, find
the expression for the Debye temperature θD (where ~ωmax = kBθD). Show that the number of phonons
exceed in this solid is proportional to T 3 for T � θD and proportional to T for T � θD.

Problem 65 Thermo

The figure shows the pressure versus molar volume isotherms for the Van der Waals gas

P =
RT

v − b
− a

v2

1. Which of the isotherms in the figure contains regions that do not satisfy the thermodynamic stability
conditions?

2. Which isotherm represents the critical temperature?

3. Sketch on the graph the region in which the system is unstable to local pertur- bations (spinodal
line).

4. Sketch on the graph the region in which the system is globally unstable.

5. What is physically occurring within this region of global instabilities?

6. Sketch the qualitative behavior of the molar volume against temperature for an isobar at P = 0.02
and P = 0.06.

Problem 66 Thermo

An ideal gas is expanded adiabatically from (P1, V1) to (P2, V2) [AB in figure below]. Then it is compressed
at constant pressure to (P2, V1) [BC] . Finally the pressure is increased to P1 at constant volume V1 [CA].

1. Calculate WBC , the work done by gas in going from B to C.

2. Calculate WCA, the work done by gas in going from C to A.
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3. For an ideal gas, show that CP = CV + Nk, and hence thatCV = Nk/(γ − 1), where γ ≡ CP /CV .
(Here N is the number of molecules and k is the Boltzmann constant. )

4. Calculate WAB the work done by gas in going from A to B, in terms of γ, P2, V2, P1, and V1

5. Calculate QCA, the heat absorbed by gas in going from C to A, in terms of γ, V1, V2, P2 and P1.

6. Calculate the efficiency η ≡W/QCAof the engine, and show that it is given by

η = 1− γ 1− V2/V1

1− P1/P2

(Why do you need to divide by QCA and not by QCA +QBC ?)

Problem 67 Thermo

Molecules do not all pile up at the bottom of the atmosphere, but rather have a density n that decreases
as one moves higher in the atmosphere The pull of gravity is countered by upward diffusion. Consider a
monoatomic gas of molecules of mass m, in a uniform downward gravitational field g. Take the y-direction
to be upward.

1. Using N as the number of molecules in a gas, V as its volume, and kB as the Boltzmann constant,
write down the ideal gas law.
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2. Find the differential equation for the pressure P (y) under gravity by finding the equilibrium condition
for the matter in a slab of area A and thickness dy.

3. For an isothermal atmosphere if P = P0 at y = 0, find P (y).

4. Find the density n(y).

5. If the drift velocity due to gravity is v = µmg, where µ is called the mobility, write down the number
current density Jg due to the pull of gravity, including its direction.

6. The number current density due to diffusion is Jdiff = −D∂yn, where D is called the diffusion
constant. Setting to zero the sum of the number current densities due to gravity and due to diffusion,
find a relationship between D and µ.

Problem 68 Stat Mech

Consider a set of N indistinguishable spin-1 objects, each with energy

E = ASz +BS2
z

where S, is given in units where = 1. Thus A and B are energies.

1. With (n1, n0, n−1) the numbers of spins in the states with Sz = 1, 0,−1 respectively, find the number
of arrangements W of the spins that will produce these numbers.

2. Write down the free energy F for this system, in terms of n1, n0, n−1 the temperature T,and N. Use
log(m!) = m log(m)−m for large m. Set kB = 1.

3. Using ni and n0 as independent variables, minimize F to find n1, n0, and n−1, in equilibrium at a
given temperature T.

Problem 69 Stat Mech

Consider a one-dimensional (non-harmonic) oscillator with energy given by

E =
p2

2m
+ bx4

where p is the momentum and b is some constant. Suppose this oscillator is in thermal equilibrium with
a heat bath at a sufficiently high temperature T so that classical mechanics is valid.

1. Compute its mean kinetic energy as a fraction of kT .

2. Compute its mean potential energy as a fraction of kT .

3. Consider a collection of such non-interacting oscillators all at thermal equilib- rium in one-dimension.
What is the specific heat (per particle) of this system?

[Hint: You might use ∫ ∞
0

xn−1e−xdx = Γ(n), n 6= −1,−2, . . .

or an integration by parts in solving this problem.]
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Problem 70 Thermo

The equation of state for an ideal gas is PV = nRT

1. Prove that the internal energy U(V,T) is s function of T only.

2. If the entropy at T0, V0 is S0, find the entropy at any other T, V assuming the molar specific heat
CV is a given constant. (Express the answer for S as a function of the variables T , V .)

3. Show that the reversible work done in an isothermal expansion is equal to the negative of the change
in free energy.

Problem 71 Stat Mech

1. Determine the chemical potential, at temperature T = 0 and at number density n for a non-
interactmg, non-relativistic Fermi gas of spin-1/2 and mass m(ε = p2/2m)

2. Repeat the previous part for the relativistic case (ε = cp)

3. Show that, at some critical density n, and T = 0, the proton-electron plasma starts a transition into
the degenerate neutron gas. Neglect any interaction between the particles and consider the electron
and proton systems as Fermi gases. Take into account the mass difference ∆M between the neutron
and proton. Since me � ∆M , the electrons must be treated relativistically. Assume that neutrons
created in the course of this transformation leave the system. Neglect gravity.

4. Consider such a system in a box of volume V , with n < nc Determine the number of electrons
Ne and their pressure as the volume is decreased somewhat below the volume where the transition
occurs. Do not consider compression so high that complete conversion occurs.

Problem 72 Stat Mech

The 1-dimensional Ising model is defined as a chain with ”spins” ′,σn, on each site n (n = 1, 2 . . . N )
independently taking one of two values σn = ±1. The energy of this system can be written as follows:

H = −J
N−1∑
n=1

σnσn+1

where J is a positive constant.

1. Introduce ” spins on a bond” τn = σnσn+1 as new variables. Explain why the τ ’s are independent.
Find the partition function.

2. Find the free energy and the heat capacity per site.

3. Find the asymptotic behavior of the heat capacity at T � J and at T � J . Give a physical
explanation for the dominant behavior at T � J .

Problem 73 Thermo

The total entropy S for a system of N particles in a container of volume V , with total energy E, is

S = aE1/3V 1/3N1/3

where a is a constant.
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1. Compute the temperature, pressure, and chemical potential as functions of S, V , and N .

2. Stability, the Third Law, and the extensivity property provide some constraints on allowable thermo-
dynamic quantities (Extensivity refers to how various quan- tities scale when two identical systems
am combined.) Discuss how the results from the previous part satisfy or do not satisfy these con-
straints.

3. Compute the Helmholtz free energy F (T, V,N), and from F compute S(T, V,N). Show that this is
consistent with the entropy S(E, V,N) given initially.

Problem 74 Thermo

Consider a cylinder of water that undergoes a slow adiabatic compression

1. What thermodynamic property of the water will be constant during an adiabatic compression? Use
this to write a simple equation connecting small temperature changes, ∆T , to pressure changes, ∆P ,
to first order.

2. The temperature change in an adiabatic compression can be related to the water’s compressibility,
α ≡ 1

V (∂V/∂T )P , and its specific heat at constant pressure, CP . To do so, first find a Maxwell
relation which will connect the compressibility to a derivative of the entropy.

3. Now transform your equation from the first part, in order to express small temperature changes, ∆T ,
to adiabatic pressure changes, ∆P , in terms of the temperature, volume, CP , and the compressibility.
Consider α, and CP , to be essentially constant during the process.

Problem 75 Thermo

Specific heat of a gas-liquid system:

1. What general expression relates pressure and temperature changes for conden- sation and evaporation
along an equilibrium liquid-gas coexistent curve?

2. Consider a liquid and its vapor, and assume that the vapor behaves as an ideal gas. Express the
slope (∂P/∂T ) along the coexistence curve, in terms of the latent heat of vaporization (Lv) of the
system, plus other thermodynamic quantities.

3. Now find an expression for the specific heat of the gas, following the coexistence curve (that is, the
specific heat calculated from the heat into the gas only, as it contacts the liquid), in terms of T,
(Lv), and the specific heat at constant pressure (CP ). CP , (assumed to apply only to the gas) and
Lv may be taken to be constant. [Hint: a Maxwell relation may be used to obtain the final answer.]

4. Show from your result that there is a temperature regime in which the specific heat of the gas is
negative. Does this mean that the gas is thermodynamically unstable?

Problem 76 Thermo

Consider a classical gas, in equilibrium at temperature T, with no interactions between gas particles. Each
particle has mass m.

1. Write down the general form of the velocity (not speed) distribution function for such a gas. This
should be a probability function per unit volume, per d3~v. Assume the gas as a whole is at rest in
your coordinate system. Determine the normalizing constant.
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2. Obtain v rms , which is the root-mean-square velocity for this gas, using your distribution function
(You get credit for demonstrating the method, not for recalling the result.)

3. Find the probability that a gas particle will have a positive x velocity component that exceedsv rms .
(There is a table of values in the CRC tables that can be used to evaluate the integral.)

Problem 77 Stat Mech

In so-called intrinsic semiconductors at T = 0, electrons fill the lower (valence) band, whereas the upper
(conducting) band is empty. Let the maximal energy of the valence band and the minimal energy of the
conducting band correspond to the momentum ~p = 0 and be separated by the energy gap Eg. Assume
that near the minimum (maximum) the energy ε(p) can be represented approximately by an expansion:

εc =
Eg
2

+
p2

2mc
; εv = −Eg

2
− p2

2mv

where Eg, is the gap in the electron spectrum and mc,v, are effective masses of electrons and holes
respectively.

1. Using the electro-neutrality condition, (i.e., the number of thermally excited holes in the valence band
equals the number of thermally excited electrons in the conduction band.), calculate the chemical
potential µ for electrons as a function of temperature at a temperature T � Eg.

2. Calculate the density of electrons in the conducting band and the density of holes in the valence
band at a temperature T � Eg.

Problem 78 Stat Mech

Calculate the efficiency of a Stirling engine using a classical ideal gas. In the Stirling engine the gas is
compressed isothermally from a volume V1, to a smaller volume V2 at a temperature T2 then it is heated
at a fixed volume V2 to a higher temperature T2; then it performs work, expanding isothermally to the
initial volume V1, and finally it returns to the initial temperature T1 by cooling at fixed volume V1.

Problem 79 Stat Mech

A 2-dimensional classical ideal gas of N particles at a temperature T, is contained to an area A in the
x− y plane.

1. Find the partition function and the free energy for this system.

2. Determine the surface tension as a function of temperature and density (number of particles per
unit area) n = N/A

3. If the same gas is placed in a field of constant force per particle, F, directed along the x-axis,
determine the density n as a function of x.

4. Find how the surface tension varies with x.

Problem 80 Stat Mech

Consider a solid with N, atoms each having a mass m. Assume that each atom has three independent
modes of oscillation, each at the same frequency w0. This is known as the Einstein model. Let the solid
be in equilibrium with a vapor of the same type of atom, and let ε0 > 0 be the sublimation energy per
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atom, i.e. the energy which is necessary to remove an atom from the solid to the vapor with zero final
kinetic energy.

The vapor can be treated as an ideal gas. Its free energy is

Fg = −kBTNg

[
log

(
Vg

NgΛ3
T

)
+ 1

]
, ΛT =

√
2π~√
mT

where we have assumed that the vapor contains Ng particles occupying a volume Vg.

1. Find the free energy Fs of the solid.

2. Find the equilibrium vapor pressure as a function of temperature if the volume Vgis maintained
constant. Neglect any volume changes in the solid, due to evaporation.

Problem 81 Stat Mech

The surface of the sun has the temperature 6000K. The sun’s radius is R ≈ 106km

1. Assuming that the sun is a black body, what is the emitted power per cycle dP/df at a wavelength
of 3cm? (Please give a simple approximate expression.)

2. What is the emitted power per cycle dP/df at the wave-length 3× 10−6 cm ?

3. Indicate how you would determine the power P integrated over all frequencies.

Problem 82 Thermo

One mole of an ideal gas, with internal energy U = 5
2nRT (n = 1 mole), is taken from an initial state i,

with pressure P0 and volume V0 to a final state f with Pf = 2P0 and Vf = 2V0 by two different paths:
Path 1: The gas undergoes an isothermal expansion from V0 to 2V0, and then the pressure is increased to
its final value Pf at constant volume.
Path 2: The gas undergoes an isothermal compression to Pf , and then is expanded at constant pressure
to its final volume Vf .

1. Sketch P − V diagrams for each case.

2. Find the heat Q added to the system in each step of the above two processes in terms of P0, V0, and
other constants.

3. Find the change in entropy of the gas in going from the initial to the final state.

Problem 83 Thermo

The cycle of a highly idealized gasoline engine can be approximated by the Otto cycle. Steps 1 → 2
and 3 → 4 are adiabatic compression and expansion, respectively. Steps 2 → 3 and 4 → 1 are isochoric
(constant volume) processes. Treat the working medium as an ideal gas with constant tγ = CP /CV = 5/3
and take V1 = 3] it ers , P1 = 1 atm

(
105N/m2

)
, and P3 = 2P2.

1. Sketch the cycle on a P - V diagram.

2. Compute the efficiency of this cycle for compression ratio r = V1/V2 = 4.

3. Calculate the work done on the gas during the two steps 1→ 2 and 2→ 3.

4. Calculate the entropy changes of the gas during the two step 1→ 2 and 2→ 3
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Problem 84 Stat Mech

A cylindrical container of height L and radius R contains many identical non-interacting particles of mass
m at temperature T. If the container rotates about its axis at angular velocity ω, the single-particle
Hamiltonian in the rotating frame is given by

H =
p2

2m
− mω2r2

2

where r is the radial coordinate, and p is the total momentum.

1. The earth’s atmosphere thins out with increasing height, because of gravity. A similar effect occurs
for the gas within this rotating container. Determine how the pressure and density vary with radial
coordinate r.

2. If the system has N particles, obtain the density as a function of r.

3. Obtain an approximate expression for the density distribution at high rates of rotation, i.e, mω2R2/2�
kBT . In this case, essentially all of the gas is com- pressed into a region of characteristic thickness
d < R close to the wall. How does d scale with m,ω, and T? For hydrogen molecules at room
temperature, in a container with R = 5cm, estimate the numerical value of ω where d equals 0.1R.

Boltzmann constant kB = 1.38× 10−23J/K
Speed of light c = 3.0× 108m/s
Proton mass mp = 1.67× 10−27kg

Problem 85 Topic

A horizontal wire of length L is fixed at both ends and tightened to a tension F. It is in equilibrium with
a heat bath at temperature T.

1. Because of thermal fluctuation, the midpoint of the wire is sometimes displaced vertically by a
distance y(y � L). Find the work done by the heat bath to the wire.

2. Find the probability for such displacement to happen.

3. Find the root-mean-square displacement of the midpoint of the wire.

Problem 86 Topic

In a ”hot quark-gluon plasma”, the gluons are massless spin-1 particles (energy- momentum relation
ε = cp)), with eight degenerate ”colors”, and quarks are relativistic spin-1/2 particles with three degenerate
”colors” and two degenerate ”flavors”.

1. Determine the degeneracy factors dG and dC for the gluons and the quarks. In what follows, consider
only the gluons, and take volume V.

2. Determine the thermal average for the total energy E for the gluons. (Gluons are not conserved;
from this one can show that their chemical potential µG = 0.) Leave any integrals in dimensionless
form; do not evaluate them.

3. Determine the heat capacity CV , and the entropy S.

4. Determine the free energy F and the pressure P associated with the gluons. Show that P = 1
3E/V
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Problem 87 Topic

Consider a crystal with p identical hydrogen atoms distributed over J identical bulk sites and K identical
surface sites. Let p � J . The atoms do not interact, but they have an energy εB at the bulk sites, and
an energy εS at the surface sites. Let b be the number of atoms at bulk sites, and let r be the number of
atoms at surface sites , so p = b+ s

1. If εB = εS , what is the ratio b/s at all temperatures? Explain your reasoning. In what follows, do
not assume that εB = εS .

2. Find the number of ways W (J, b) that b atoms can be distributed over the J bulk sites. Find the
bulk entropy SB(J, b), the bulk energy EB(J, b), and the bulk free energy FB(T, J, b).

3. Find the number of ways W (K, s)that s atoms can be distributed over the K surface sites. Find the
surface entropy SS(K, s), the surface energy ES(K, s) and the surface free energy FS(T,K, s).

4. Minimize the total free energy FB(T, J, b) + FS(T,K, s) with respect to b at fixed b + s = p. Find
b/s for p� J,K. Note that, for large integer z, ln(n!) = z ln(z)− z.

5. Find b/s in the following limits: at high T ; at low T if εS � εB ; at low T if εS � εB .

Problem 88 Topic

A set of N non-interacting molecules are fixed in space. Each has a permanent electric dipole moment of
magnitude p0 that is free to rotate in three dimensions. They are in a uniform electric field ~E = E0ẑ?.

1. Find the thermal average, at temperature T, of their total electric dipole moment ~P .

2. Evaluate ~P at low T, and explain your result physically. Define ’low T’ in terms of the parameters
of the problem.

3. Evaluate ~P at high T.

4. At ’high’ T find the electric polarizability α = ∂P/∂E, taking ~P and ~E along ‡̂.

Problem 89 Topic

Find the entropy rise ∆S of a monoatomic ideal gas of N molecules occupying the volume V1 when it
expands to a volume V2 under constant pressure.

Problem 90 Topic

1. Using the extensivity/intensivity properties of the thermodynamic quantities, show that U = ST −
PV + µN .

2. Using this result, prove the following thermodynamic identity:

1

n2

(
∂n

∂µ

)
T

= − 1

V

(
∂V

∂P

)
N,T

where −V −1(∂V/∂P )T,N is the isothermal compressibility and n = N/V is the particle number
density. Here P denotes the pressure, T the absolute temper- ature, and µ the chemical potential.
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Problem 91 Topic

Consider a two-dimensional ideal neutron gas with areal umber density ( i.e., number per unit area) n at
temperature T and zero magnetic field. Each neutron has a mass m.

1. Derive a closed-form expression for the chemical potential µ as a function of T and n.

2. A magnetic field H is now applied to the system. Each neutron has a magnetic moment µN whose
direction is opposite to its spin. Derive a relation which gives implicitly the function µ(T, n,H). Use
this relation to show that (∂µ/∂H)T,n|H=0 = 0.

3. Derive a closed-form expression for the zero-fold spin-susceptibility χS ≡ (∂M/∂H)T,n|H=0 of the
system as a function of T and n. Note, that the definition of χS has n kept constant and not µ, so
you must properly use the result of the previous part to do this part correctly.

Problem 92 Topic

You should express your answers for this problem in terms of any of the following

Temperature T

Volume V

Pressure P

Heat Capacity at constant volume Cv
Isothermal Compressibility κT = − 1

V

(
∂V
∂P

)
T

Thermal Expansion α = 1
V

(
∂V
∂T

)
P

1. Express the incremental heat δQ absorbed by a gas if the pressure of the gas is increased incrementally
from P to P + δP while maintaining a fixed volume.

2. For the same process, determine the incremental change in the enthalpy of the gas, δH where
H = U + PV .

3. Evaluate your answers in for the first and the second parts for the case of an ideal monoatomic gas.

Problem 93 Topic

It is given that the equation of state of a certain photon-like gas is given by

P = aε(T )

where P denotes pressure, a > 0 is a constant, and ε(T ) is the internal energy per unit volume of the
photon gas at temperature T.

1. Calculate the temperature dependence of the total internal energy U for the whole gas using the
equation (

∂U

∂V

)
T

= T

(
∂P

∂T

)
V

− P

One unknown constant is allowed to appear in your answer, but no unknown functions of either T
or V or both are allowed to appear.

2. Calculate the entropy S of the system as a function of T and V .
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[Hint: Start from the equation

dS =
1

T
(dU + PdV ) =

1

T

(
∂U

∂T

)
V

dT +
1

T

[
P +

(
∂U

∂V

)
T

]
dV

evaluate (∂S/∂T )V , and (∂S/∂V )T , and then integrate them to obtain S. Use the third law of thermody-
namics to fix any unknown integration constant(s) of this step.]

Problem 94 Topic

A molecule has energy E = 1
2mv

2 + λj, where v is the velocity, λ is a constant with the dimension of
energy, and j is an internal quantum number which can take all odd integer values (no degeneracy). It is
in a cubic box of volume V with its walls maintained at the absolute temperature T.

1. Calculate the average energy of the molecule as a function of T assuming that it is in thermodynamic
equilibrium with the walls of the box.

2. Calculate the free energy of the molecule as a function of T .

3. Calculate the entropy S of the molecule as a function of T .

Problem 95 Topic

In thermodynamics, all physical properties can be calculated once one of the thermo- dynamic potentials
is known as a function of appropriate variables (e.g. U(S, V,N) ). Unfortunately, the thermodynamic
potentials can not be directly measured but need to be calculated from experimentally accessible quantities,
such as the specific heat at a constant volume cv = T (∂s/∂T )v ,the isothermal compressibility κT =
−v−1(∂v/∂P )T and the thermal expansion coefficient at constant pressure α = v−1(∂v/∂T )P , where N is
the particle number, P is the pressure, T is the temperature, s = S/N is the specific entropy and v = V/N
is the specific volume.

Given the following values for these quantities:

cv =
4v0P0T

T 2
0

(
v

v0

)1/2

, κT =
2

P
, α =

4

T

and that the pressure, specific volume and temperature are all known at a particular reference state (i.e.,
P0, v0, and T0), determine

1. The specific volume as a function of T and P and the constants of the reference state, P0, v0, and T0.

2. The specific entropy as a function of T and P and the constants of the reference state, P0, v0, and T0.
(You may assume that the third law of thermodynamics is valid for this system, and use it to fix an
integration constant.) [Hint: First obtain S(T, v)and then convert it to S(T, P )].

3. The specific Gibbs free energy g as a function of T and P and the constants of the reference state,
P0, v0, T0, and g0.

Problem 96 Topic

The fundamental thermodynamic relation for a rubber band is

dU = TdS + τdl

where U is the internal energy, T is the absolute temperature, S is the entropy, T is the tension and l is
the length of the rubber band.
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1. What is dH, where the generalized enthalpy for this system is H = U − τ ll.

2. Derive the Maxwell relation that is associated with the expression for dH. State clearly what variable
is held constant in each partial derivative.

3. Using the known fact that a rubber band contracts when it is heated at constant tension, deduce from
the Maxwell relation obtained in the previous part that a rubber band warms when it is stretched
adiabatically.

Problem 97 Topic

Consider a classical ideal monoatomic gas at temperature T in a uniform gravitational field (i.e, an
isothermal atmosphere). Assume that the gas atoms have mass, m, and that their distribution overall
all possible heights from z = 0 (the surface of the earth) to z = ∞ is an equilibrium one. Denote the
magnitude of the gravitational acceleration by g and assume that it can be taken to be a constant for all
values of z.

1. Find the probability density governing the fraction of atoms per unit height at a height z.

2. Find the mean potential energy per atom.

3. Find the total internal energy and total heat capacity of the gas (i.e., the total amount of heat energy
required to increase the temperature of the entire gas column by 1K).

Problem 98 Topic

The intersection of two Gibbs free energy surfaces is a line where Gα = Gβ, along which two phases
α and β coexist. Let the phases α and β be the liquid phase and the gas phase, respectively. Along the
liquid-gas coexistence line in the P − T plane, show that, to a vary good approximation,

log

(
P

P0

)
=
Lvap
R

(
1

Tb
− 1

T

)
where P is the vapor pressure of the liquid present, P0, is the atmospheric pressure (1atm), R is the ideal
gas constant, T is the absolute temperature, Tb is the boiling point of the system (at atmospheric pressure),
and Lvap, is the heat of vaporization per mole (whose dependence on T and P may be neglected). You
may assume that the gas phase obeys the ideal gas law.

Problem 99 Topic

You are given two objects with the same total heat capacity, C0 which is temperature independent.
(These objects are finite and should not be treated as thermal reser- voirs.) The two objects are initially
at temperatures T1 and T2 (T1 > T2) respectively.

1. What type of heat engine would you operate between these two objects so that the maximum total
amount of useable work ts extracted?

2. Using this type of heat engine, determine the final temperatures of the two objects.

3. Using this type of heat engine, determine the total amount of useable work extracted.
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Problem 100 Topic

According to the principles of quantum statistical mechanics, the pressure of black- body radiation inside
a volume V may be calculated by treating the radiation as a photon gas, and using the relation

p =
1

β

∂ logZ

∂V

where p is the mean pressure, Z the partition function, and β = 1/kBT is kept constant. You may assume
that the volume V is a cubic box of edge length L = V 1/3, with walls maintained at temperature T.

1. Express the partition function Z in terms of the energies εs, of a set of independent photon states
(i.e., normal modes) in the volume, and use it to show that

p = −
∑
s

∂εs
∂V

ns

where ns is the mean population of the state s with energy εs.

2. Using the above result, obtain an explicit relation between the mean pressure p and the mean energy
density u(= E/V ) of the photon gas.

Problem 101 (Thermodynamic relations)

Let

F = −AN
2

V
T − 1

2
B
N3

V 2
T 2 − CN

describe the Helmholtz free energy of a system of N particles in a volume V at temperature T , for a finite
interval of temperature not including absolute zero. Here A, B, and C are positive constants.

1. Find S, P , and µ in terms of N , V , and T , where S is the total entropy, P is pressure, and µ is the
chemical potential.

2. Find the energy U in terms of N , V , and S.

3. Find T in terms of N , V , and S, and verify that it is consistent with the results of the first part.

4. Find the isothermal compressibility κT = −V −1(∂V/∂P )T,N .

5. Find the total heat capacity CV .

Problem 102 (. . . )

It is given that

N(T, V, z) = V T 3f1(z)
U(T, V, z) = V T 4f2(z)

where N is the total particle number, U is the total internal energy, T is the absolute temperature, V is
the total volume of the system, and z ≡ eβµ is the fugacity, with β = 1/kβT , and µ the chemical potential.
Let CV ≡ (∂U/∂T )V,N denote the total heat capacity of the system at constant volume, and calculate CV
in terms of T , V , f1(z), f2(z), and the derivatives of f1(z) and f2(z).
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Problem 103 (Thermodynamic relations)

Consider a system of N independent harmonic oscillators with the same frequency ω. The system is at,
temperature T .

1. Show that the partition function of the system is

QN =

[
2 sinh

(
~ω

2kBT

)]−N
2. Using this result, obtain the internal energy U of the system as a function of T and N .

3. Show that the heat capacity is

C = NkB
e~ω/kBT(

e~ω/kBT − 1
)2 ( ~ω

kBT

)2

and it approaches to 0 as T → 0.

4. Determine its Helmholtz free energy F .

5. Determine its entropy S.

Problem 104 (Equations of state)

An unknown substance is experimentally found to satisfy the following equations of state:

T (u, v) = au2/3v−1/2 and P (u, v) = buv−1

where a and b are some constants, T and P are the substance’s temperature and pressure as functions of
its internal energy per particle, u, and volume per particle, v, respectively.

1. Find the condition(s) under which the above two equations of state are consistent with each other,
and then determine the entropy per particle of the substance, s(u, v), to within an additive constant

2. Fix the constant in your answer to the previous part by invoking some law in thermodynamics.

Problem 105 (Quasistatic process)

A non-ideal gas has a fundamental relation given by

U(S, V,N) =
1

2A
S2V −1/2N−1/2

where U is the total internal energy, S is the total entropy V is the volume, N is the number of molecules,
and A is a constant.

1. Determine the following equations of state

U(T, V,N) and P (T, V,N).
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2. Consider a rigid chamber of volume V0 which is subdivided by an impermeable membrane into
volumes V0/3 and 2V0/3. The chamber is isolated from the rest of the universe so that no heat
or work can be transferred between them. (You may assume that the walls of the chamber have
negligible heat capacity) A number N of molecules of the gas of the previous part is placed in the
smaller section (volume V0/3), and the larger section is evacuated. Initially, the gas has internal
energy U0 , temperature T0 and entropy S0. Solve the following two parts of this problem under
these conditions.

a If the membrane separating the two sections is broken, so that the gas can freely expand to fill
the entire chamber, what are the final values of the internal energy Uf , temperature Tf , and
entropy Sf of the gas after equilibrium has been reached? Express your answer in terms of U0,
T0, and S0.

b If the gas is then slowly compressed isothermally back to its original volume, how much work
is done by the piston compressing the gas? Express your answer in terms of U0 , T0 , and S0

Problem 106 (Ideal gas)

1. A gas of N inert atoms (such as Ne or Ar) is contained in a volume V which may be taken as a
cube of side L = V 1/3 with periodic boundary conditions. The gas is in thermal equilibrium with
the walls of the container which are maintained at (absolute) temperature T . Calculate the number
of atoms in this gas with atomic kinetic energy larger than rkBT , where r is some positive rational
number (such as 2.0). Your answer may contain a dimensionless, unevaluated integral. You may
neglect any interaction between the gas atoms, and treat the gas with Boltzmann statistics.

2. Will your answer change if the gas is made of N diatomic molecules (such as N2 or CO), if by kinetic
energy we now mean the center-of-mass kinetic energy of a molecule? Briefly justify your answer.

Problem 107 Quantum oscillator

A quantum particle of charge q is in the potential V (x) = mω2x2

2 in 1D at temperature T .

1. Find the heat capacity of this system.

2. Find the electric dipole susceptibility of the system. (d = −(∂F/∂E)V,N,T , χ = (∂d/∂E)V,N,T where
E is the electric field.)

3. For the oscillator state ψn in the presence of electric field E calculate xn = 〈ψn|x̂|ψn〉, and then
average displacement x̄ =

∑
n xnωn.
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Problem 108 (Thermodynamic relations)

1. Show that (
∂S

∂P

)
T

= −αV,

where α is the coefficient of thermal expansion.

2. Show that for an isothermal compression

dE = (−TαV + PV βT ) dP,

where βT is the isothermal compressibility. To get the full credit for this proble you must start with
dE = TdS − PdV .

Problem 109

1. What is the average energy of a system at temperature T with two quantum states, with an energy
difference ε separating the levels?

2. In a highly disordered solid it is believed that a large number of two-level “tunneling” systems are
present with a distribution of energy differences. If the number of these two level systems per unit
volume of the solid with energy separations between ε and ε + dε, D(ε), is a constant, show that
their contribution to the heat capacity of the solid will be linear in temperature.

Problem 110 1D classical particle in a potential

A classical one dimensional particle, confined to the region y ≥ y0 is in a potential

V (y) = V0 log (y/y0)

The statistical distribution is given by %(p, q) = Ae−E(p,q)/T , where A is a normalization parameter, T is
a parameter which is called temperature, and E(p, q) is the particle’s energy.

1. Find the normalization constant A. Determine the critical temperature Tc above which the particle
escapes to infinity (You need to figure out what it means.)

2. Write down the normalized positional distribution function f(y) (i.e. the probability per unit dis-
tance to find the particle between y and y + dy) for this particle for T < Tc.

3. Find the average distance 〈y〉 for the particle. What happens if 0 < Tc/2− T � Tc/2?

Problem 111

A thermodynamic system consists of N spatially separated noninteracting subsystems. Each subsystem
has non-degenerate energy levels 0, ε, 2ε, and 3ε. The system is in thermal equilibrium with a heat
reservoir of absolute temperature T = ε/kB. Calculate the partition function, the mean energy, and the
entropy of the thermodynamic system.
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Problem 112

At T = 0, all the N atoms in a crystal occupy a lattice site of a simple cubic lattice with no vacancies.
At higher temperature, it is possible for an atom to move from a lattice site to an interstitial site in the
center of a cube (the interstitial atom does not have to end up close to vacancy). An atom needs energy
ε to make this transition.

1. Compute the number of different ways of making n vacancies (and correspondingly fill n interstitial
sites) in the lattice.

2. Calculate the entropy of a state with energy E = nε.

3. Calculate the average 〈n〉 in equilibrium at temperature T .

4. Calculate the free energy of the lattice at temperature T .

Problem 113 (Thermodynamics of magnetic materials)

A paramagnetic salt contains a total of 1024 non-interacting magnetic ions, each with a magnetic moment
of 1 Bohr magneton (9.273× 1024Am2) which can be aligned either parallel or anti-parallel to a magnetic
field. A magnetic field of magnetic induction 1T is applied at a temperature 3K.

1. Calculate the partition function.

2. Compute the magnetic energy.

3. Compute the heat capacity.

[Hint: You will be given more credit for this problem if you can also give numerical values for the last
two parts.]

Problem 114 (Fermi gas)

1. Find the mean speed of the fermions in an ideal D-dimensional Fermi gas at T = 0 (the dispersion
is εp = p2/2m) in terms of vF - Fermi velocity (velocity at εF ).

2. Find the average kinetic energy of a fermion in terms of vF .

Problem 115 (Quantum mechanics)

The single particles energy levels for a particular Hamiltonian are εn = nε. where n = 1, 2, 3.... For a system
of three non-interacting identical particles in the same spin state, find the energy and the degeneracy of
the ground state and the first four excited states if the particles are:

1. Bosons.

2. Fermions.

3. What is the energy and degeneracy of the ground state and the first four excited states if the system
consists of spin 1/2 particles which are not constrained to be in the same spin state?

38



2 Graduate level

Problem 116 (Landau theory of phase transitions)

Remembering that the free energy F will be minimized in a given phase, and that the “order parameter”
is defined to be zero above a phase transition, consider a system whose free energy F depends on an order
parameter φ according to

F (φ, T ) = F0 + a (T − Tc)φ2 + bφ4

where F0, a, and b are all positive constants. Show that there is a phase transition at a temperature Tc
and deduce the temperature dependence of the order parameter. Calculate the jump in the heat capacity
at T = Tc.
[Hint: C = −T (∂2F/∂T 2).]

Problem 117 (Thermodynamics for a two level system)

A system consists of N weakly interacting particles each of which can be in either of the two states with
respective energies ε1 and ε2, with ε1 < ε2.

1. Make a qualitative plot of the mean energy ε̄ of the system as a function of the temperature T .
What is ε̄ in the limit of very low and very high temperatures? Roughly at what temperature does
ε̄ change from its low to its high temperature value?

2. Using the result of the previous part make qualitative plot of the heat capacity CV as a function of
the temperature T .

3. Calculate explicitly an expression for the mean energy ε̄(T ) and heat capacity CV (T ) for this system.
Verify that your expression exhibit the qualitative features discussed in the previous parts.

Problem 118 (Bose Einstein statistics)

1. For a photon gas, show that the average number of photons in a particular state, s, is given by

ns =
1

eβεs − 1
,

where εs is the energy of the state s, and β = 1/kBT .

2. Calculate the density of modes i.e. the number of modes per unit volume between ω and ω + d for
a three dimensional photon gas.

3. Show that the average energy density ū of the gas can be written as

u(ω, T )dω =
hω3dω

π2c3 (eβhω − 1)

4. Show that hωmax/kBT ≈ 3,where ω represents the peak in the energy density functional.

5. Show that the energy density functional is proportional to T 4.
[Hint: Change the energy hω to a dimensionless variable.]

Problem 119 (Quantum thermodynamics)

Suppose we have some type of wavelike excitation in a solid which is characterized by a free quasiparticle
of spin 3. The total number of quasiparticles in the system is not conserved. Furthermore, the excitation
(quasiparticle) obeys the dispersion relation ω = Ak3, where ω is the angular frequency of the excitation, k
is its wave number, and A is a constant of proportionality. If the solid has a volume V and is macroscopic
in size, then determine the temperature dependence of both the internal energy and heat capacity in the
limit of very low temperatures.
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Problem 120 (Quantum statistics)

There are three quantum states of energies 0, ε, and 2ε. Consider a system of two indistinguishable
non-interacting particles which can occupy these states. The system is coupled with the heat bath at
temperature T .

1. Calculate the free energy of the system in case the particles are Bosons.

2. Calculate the free energy of the system in case the particles are Fermions.

3. What is the ratio of occupation probability of the highest energy state of the system to the lowest
energy state in each of these cases?

Problem 121

A sample of water is placed in an external magnetic field B. Each proton has a spin 1/2 and a magnetic
moment µ. An applied radio-frequency field can induce transitions between the magnetic (Zeeman) energy
levels, (How many possible energy levels per proton are there?), if the frequency ν satisfies the Larmor
condition hν = 2µB. The power absorbed from the radiation field is then proportional to the difference
in the number of protons in the energy levels. Assume that the protons in the water are in thermal
equilibrium at temperature T such that µB � kBT .

1. Give an expression for the partition function.

2. How does the absorbed power depend on the temperature of the water?

Problem 122 (Density of states)

If D(ε) is a density of states function, find an expression for the heat capacity of a fermion gas at kBT � ε0F ,
even if D(ε) is a complicated function of energy ε.
[Hint: The expression for the heat capacity should contain D(ε), T , and some constants. ε0F is the
chemical potential at absolute zero. You may need the integral∫ ∞

−∞

x2ex

(ex + 1)2dx =
π2

3
.

]

Problem 123 1D oscillator, quantum vs classical

In one-dimension, a mass m is attached to a spring of spring constant k. The system is in thermal
equilibrium at a temperature T .

1. Assuming the classical statistics hold, what is the rms displacement of the mass from equilibrium,
if T = 70◦F, m = 2g, and k = 50g/s2. Take kB = B1.4× 10−16cgs and ~ ≈ 10−27cgs.

2. Treating this system using quantum statistics, where the energy of the system is E = ~ω(n + 1/2)
for n = 0, 1, . . . , and there is only one state at each energy, calculate the partition function of this
system. (ω is the oscillation frequency of the mass on the spring.)

3. What is the average energy Ē of the system? Does this come close to the classical value for the
system in the first part?

4. From the previous part, find the average occupation number n̄. Must n̄ be large or small for Ē to
be close to its classical value?

5. Give an approximate criterion for the validity of the classical result.
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Problem 124 3D quantum oscillator

A 3D harmonic oscillator has mass m and the same spring constant k for all three directions. Thus, its
quantum-mechanical energy levels are given by

E = ~ω (n1 + n2 + n3 + 3/2)

Neglect the zero point energy in what follows.

1. What are the energy E0 and degeneracy g0 of the ground sate? Of the first excited state? Of the
second excited state?

2. What is the partition function for this system if only the lowest two (ground and the first exited)
energy levels are important? When this approximation valid?

3. What is the free energy in this case?

4. What is the entropy in this case?

5. What is the rms fluctuation δE ≡
(
E2 − (E)2

)1/2
in the energy in this case?

Problem 125 (Two level system)

Consider a large number N of identical non-interacting particles, each of which can be in only one of two
states, with energies ε0 and ε1. Denote by n0 and n1 the occupation numbers of each of these states.

1. Find the total energy E as a function of n0.

2. Find the number of states N available to the system, as a function of n0

3. Find S, the entropy, as a function of E.

4. Find the temperature T as a function of E.

5. Using E0 = Nε0 and ∆ε = (ε1 − ε0), show that

E = E0 +
N∆ε

1 + exp [∆ε/kBT ]

[Hint: log n! ≈ n log n− n, for large n.]

Problem 126 2D Fermi gas

1. Find the Fermi energy at T = 0, εF , of a gas of N non-interacting spin one-half particles constrained
to move in two dimensions.

2. Recall that the surface tension, σ, in two dimensions is analogous to pressure in three dimensions so
that the surface tension contribution from a particle in a state n is given by −∂εn/∂A. Shaw that
the surface tension at T = 0 is given by NεF /2A, where A is the area that the particles’ occupy.
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Problem 127 (Ideal gas; van der Waals gas)

1. Show that for an ideal gas, for a quasistatic adiabatic process

dP

dV
= −γ P

V

where γ = CP /CV .

2. Write down the expression for the work done by one mole of a monoatomic ideal gas during an
adiabatic expansion from a state (P1, V1) to a state with volume V2.

3. The molar energy of a monoatomic gas which obeys van der Waals’ equation of state is given by

E =
3

2
RT − a

V
,

where V is the molar volume at a temperature T and a is a constant of the gas. If initially, one
mole of the gas is at the temperature T1 and occupies volume V1, and the gas is allowed to expand
irreversibly into a vacuum in an isolated container, so that it occupies a total volume V2, what is
the final temperature T2 of the gas?

4. Calculate the change of the temperature in this process for the ideal gas. Give the reason for your
answer explaining concisely the origin of the differences (In one short(!!!!) sentence.).

Problem 128 (Thermodynamic equilibrium)

For a vapor in equilibrium with its solid phase, find the relation between the pressure P and the temper-
ature T , if the molar latent heat q is constant. The vapor is close to the ideal gas, and the molar volume
of the gas is much larger than that of solid.

Problem 129 Two chambers

A thermally isolated container is divided by a partition into two compartments, the right hand compart-
ment having a volume b times larger than the left one. The left compartment contains ν moles of an ideal
gas at temperature T , and pressure P . The right compartment also contains ν moles of an ideal gas at
temperature T . The partition is now removed. Calculate:

1. The final pressure.

2. The total change in the entropy if the gases are different.

3. The total change in the entropy if the gases are the same.

4. What is the total change in the entropy if the gases are the same and b = 1? Can you explain the
result?

Problem 130 (Thermodynamic relations)

N classical particles are constrained to move on a frictionless flat surface of area A.

1. What is the partition function for the system at the temperature T , assuming that the particles are
distinguishable?

2. Same as above, if the particles are indistinguishable.
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3. For indistinguishable particles, compute the free energy F .

4. For indistinguishable particles, compute the entropy S.

5. Verify that, if N → 2N and A → 2A, then S → 2S. What role indistinguishability have to play in
this result?

6. Let σ represent the two-dimensional pressure, or surface tension, of this system. Find σ as a function
of N , T , and A.

Problem 131 (Chemical potential; Bose Einstein statistics)

Consider a system of N � 1 non-interacting bosons of spin zero, with quantum states at the single particle
energies 0 and ε. The thermal average population of the lowest state is twice the population of the state
with energy ε. Find approximate values of the chemical potential µ and the temperature T .

Problem 132 Vacancy formation

A model for a vacancy formation in an otherwise perfect crystal is as follows. An energy Es is required to
produce a vacancy by taking an atom from the interior and putting it on the surface. Let the number of
lattice sites in the bulk N greatly exceed the number of vacancies n, and let n� 1.

1. In how many ways can one take n atoms from the interior? Treat the atoms as indistinguishable.

2. What is the entropy S associated with this?

3. What is the energy of the system, assuming that E = 0 in the absence of vacancies?

4. For a given temperature T , what is the thermal average value of n?

Problem 133 (Cyclic process)

Consider a cyclic engine operating with one mole of an ideal monoatomic gas in between two baths with
temperatures Ta and 2Ta in the cycle a→ b→ c→ d→ a. Va and Ta are the volume and the temperature
of the gas in point a.
a→ b is isobaric increase of temperature from Ta to 2Ta.
b→ c isothermal expansion to the volume 3Va.
c→ d decrease of temperature back to Ta at constant volume. d→ a isothermal compression back to the
volume Va.
All processes are reversible.

1. Calculate the efficiency of this engine and compare it to the maximum possible efficiency for an
engine operating between Ta and 2Ta.

2. What is the net entropy change of the gas in one cycle?

3. What is the net change of the energy of the gas in one cycle?

4. What is the net change of the entropy of the hot thermal bath during one cycle, if all processes are
reversible?

5. What is the net change of the entropy of the cold thermal bath during one cycle, if all processes are
reversible?
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Problem 134 (Partition function)

Write down the partition function for an ideal gas of N monoatomic molecules in a volume V in a classical
limit where you have treated the particles as distinguishable. What is the partition function in the classical
limit if the particles are indistinguishable? Use both partition functions to calculate the entropy of the
ideal gas in each case. Why is the result for the distinguishable particles physically unacceptable?

Problem 135 (Two level system)

1. Consider a particle which can take one of only two energy levels (E = 0 or E = ε). Find and sketch
as a function of T the average energy E(N,T ) and the heat capacity CV (N,T ) for a system of N
particle. The particles are distinguishable.

2. Suppose that the value of the excited state energy ? varies for different particles in a system of N
particles. Furthermore, assume that the number of particles with a particular value of the excited
state energy between ε and ε + dε is n(ε)dε and suppose that n(ε) is a constant for all energies
between 0 and ε, and that there is no states with ε > ε0, i.e.

n(ε) =

{
n0, for 0 < ε ≤ ε0
0, for ε > ε0

and N =
∫∞

0 n(ε)dε = n0ε0. Find the temperature dependence of the specific heat of these N
particles at low temperature, T � ε0/kB.

Problem 136 (Observables)

Consider a system of N noninteracting particles in a volume V at an absolute temperature T . The single
particle energy states are described by εi = ~2k2

i /2m. For convenience, assume that the ki are determined
by periodic boundary conditions.

1. Show that the mean pressure P̄ of the system is given quite generally in terms of the average kinetic
energy E by

P =
2E

3V

independent of whether the particles obey classical, Fermi-Dirac, or Bose-Einstein statistics.

2. Show that the dispersion in pressure of this system, (∆P )2 = (P − P )2 , is given by

(∆P )2 =
2kBT

2

3V

(
∂P

∂T

)
N,V

.

Problem 137 Spin-1/2 particles in a magnetic field

Consider N identical and independent particles of spin 1/2 in a magnetic field so that the energy of
each particle is either ε or −ε depending upon the orientation of the spin: down or up respectively. The
probability of the energy −ε is p and of +ε is q = 1− p.

1. Find the probability that N1 spins are up and N2 are down, with N1 +N2 = N .

2. From this probability find the average or expected value of the energy in terms of p, ε, and N .
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3. By considering that N1 and N2 are continuous rather than discrete variables, find the most likely (i.e.,
maximal probability) for the values N1 and N2 using the approximation that log(x!) ≈ x log(x)?x.

4. Write down a partition function for this system at a temperature T .

5. Find the free energy, the entropy, and the total energy from this partition function. For what value
of p will your result in the second part agree with your result for the total energy in this part?

Problem 138 (Classical degenerate system)

Consider a classical system of N weakly interacting particles. Each isolated particle can be in n states.
Assume the ground state degeneracy of the system is a, where 1 ≤ a < n. The excited energy levels are
on the average evenly distributed around a characteristic energy E1. There are no phase changes in the
phase diagram for the system.

1. Sketch entropy per particle (N → ∞) as function of temperature in the entire temperature range.
Write and denote on the graph the values of entropies and of characteristic temperature you can
determine from the given information.

2. Sketch the specific heat CV as function of temperature using CV /T and T as coordinate axes. What
is the total area under the curve?

3. Answer the first part now assuming that the levels are not all evenly distributed, but rather m out of
n states have characteristic energy E2 at least an order of magnitude larger than the characteristic
energy E1 of the remaining states.

Problem 139 Rotating fluid

An incompressible fluid of density ρf is confined to a very long (infinite) cylinder of cross section A with
which it rotates at a constant angular velocity ω around a perpendicular axis through the middle-point
of the cylinder, Fig. 0.1. Small number of microscopic spheres each of volume v and density ρs < ρf are
immersed in the rotating fluid at temperature T . Neglect any interaction between the spheres, find the
average distance of a sphere from the rotation axis.

Figure 0.1: rotating fluid
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Problem 140 (Thermodynamic relations)

A certain solid material has an isothermal compressibility

κT = − 1

V

(
∂V

∂P

)
T

Prove that adiabatic and pressure changes are related by

dV

V
= −κT

CV
CP

dP

where CV and CP are the specific heats of the material at constant volume and pressure respectively.

Problem 141 (van der Waals gas)

Consider a monoatomic van der Waals gas whose equation of state is

P = − a

V 2
+

RT

V − b
If this gas undergoes free expansion,

1. What is the change in temperature in terms of the initial volume V1 and final volume V2?

2. Determine the change in entropy.
[Hint: CV for a monoatomic van der Waals gas is a temperature and volume independent constant.]

Problem 142 Electrons in a metal

Let ε~p = ρ(|px| + |py| + |pz|) be the energy-momentum relation of conducting electrons in a certain
(fictitious) metal, where ρ is a constant with the dimensions of velocity, and |x| denotes the absolute value
of x.

1. Draw a picture of a typical constant-energy surface ε~p = ε, for the above dispersion ε~p.

2. Express the Fermi energy εF as a function of the electron density n for this metal. (Note, that
electrons have spin 1/2.)

3. Calculate the electronic density of states (per unit volume) as a function of ε for this metal. Denote
it as D(ε).

4. Calculate the total energy of N electrons at T = 0 in this metal. Express E0/N in terms of εF .

5. Now let the temperature T be finite. Express N and the total energy E as functions of T and the
chemical potential µ. The expressions can involve integrals which you do not have to evaluate.

Problem 143 (Mean field theory)

Show that the van der Waals equation of state can be derived from a mean field theory: Assume that the
potential felt by each particle in a gas is

u(r) =

{
∞, for r < r0

−u, otherwise

where

u = cN/V

Here N/V is the number of particles per unit volume, and c is a constant. (First evaluate the classical
partition function Z, and then use it to find pressure P .) Give physical interpretation of your finite answer
(the van der Waals equation), and show that it reduces to the correct result when u(r) = 0.
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Problem 144 (Boltzmann gas)

A system of ideal Boltzmann gas containing N monoatomic molecules (of mass m each) is trapped in a
three-dimensional harmonic potential well V (x, y, z) = 1

2K(x2 + y2 + z2), so it will form a spherical cloud

whose room-mean-square radius r̄ ≡ (x2 + y2 + z2)1/2 will be the function of temperature. Calculate:

1. The (quantum) canonical partition function, (which no longer has volume V as an independent
variable due to the trapping potential)

2. The free energy F (N,T ).

3. The total entropy of the cloud S(N,T ).

4. Take the high-temperature approximation of S(N,T ) to the leading order in some small parameter,
and use it to obtain the specific heat C(N,T ) in this limit to the same order. (Note: the specific
heat is not of constant volume, nor of constant pressure, but of constant K, the force constant, and,
of course, constant N .)

5. Interpret your result from the previous part in light of the equipartition theorem.

6. Given that〈n|x2|y〉 = (n+ 1/2)~ω0/K for a quantum mechanical harmonic oscillator of mass m and
force constant K, calculate r̄rms , and hence the “mean” volume V̄ =≡ 4π

3 r̄
3
rms, of the above cloud

as a function of N and T . What is the smallest V̄ at any temperature, and what is the behavior of
V̄ with respect to T in the high-temperature limit?

Problem 145 Heat capacity at low temperatures

Show that in two dimensions, the heat capacity CV at low temperatures is the same for fermions and
bosons.[Hint: ∫ ∞

0

x2exdx

(ex − 1)2 =

∫ ∞
−∞

x2exdx

(ex + 1)2 =
π2

3

]

Problem 146 (Two level system)

A system has only two energy levels. The lower energy level with energy E = −E0 is non-degenerate, and
the higher energy level with energy +2E0 is three-fold degenerate.

1. Assuming that the system is in thermodynamic equilibrium with its surroundings which are main-
tained at an absolute temperature T , what are the probabilities that the system is found in each of
the two energy levels?

2. If the volume of this system is V0 when it is in the lower energy state, but it increases to 1.2V0

when it is in the higher energy state, calculate the mean volume 〈V 〉 of this system as a function of
temperature, and its thermal expansion coefficient α as a function of temperature.

3. What is expected limiting value of α as T → ∞? What about 〈V 〉 itself? Use these limiting
behaviors to check your results of the previous part.
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Problem 147 (Open system)

A system contains two different types of excitations whose numbers are not conserved. One type consists
of bosons such that the number of excitation modes with energy between ε and ε+ dε is

V

2π2

ε2

c3
dε

The other consists of fermions such that the number of excitation modes with energy between ε and ε+dε
is {

0 for ε < ε0
2V

3π2b
dε for ε > ε0

V is the volume of the system and b and c are constants.

1. Calculate the average energy of the system as a function of temperature T .

2. Calculate the specific heat per unit volume of the system as a function of temperature.

[Hint: One of the integrals can only be done after a series expansion, using

1

ex + 1
=
∞∑
n=1

(−1)n+1e−nx,

∫ ∞
x0

xe−axdx =
1

a
x0e
−ax0 +

1

a2
e−ax0

Also you might need some of the following definite integrals:∫ ∞
0

xdx

ex − 1
=
π2

6
,

∫ ∞
0

x2dx

ex − 1
= 2ζ(3),

∫ ∞
0

x3dx

ex − 1
=
π4

15
,

∫ ∞
0

x4dx

ex − 1
= 24ζ(5)

where ζ(x) is the Riemann zeta function.]

Problem 148 (Nuclear magnetic moments)

Consider a system of N non-interacting nuclei with a spin quantum number I. Find an expression for the
magnetization M and the entropy S of these nuclei at a temperature T in a magnetic field B. Express
your answer in terms of g, the Landé g-factor for this nucleus, and µB, the Bohr magneton. Indicate the
high temperature and low temperature limits for M and S. How could the nuclear magnetic moments be
used to cool the material?
[Hint: Useful relations:

1 + x+ x2 + · · ·+ xn =
(
1− xn+1

)
/(1− x)

sinhx ≡ (ex − e−x) /2
d sinhx
dx = coshx ≡ (ex + e−x) /2

]

Problem 149 (Fermi gas)

Consider N spin-1/2 (fermionic) atoms of a monoatomic gas that might be physically adsorbed on a
homogeneous surface of area A. Assume that the atoms are noninteracting and that the energy of a single
such atom would be described quantum mechanically by

ε =
(
p2
x + p2

y

)
/2m− ε0

where ε0 is the binding energy of the atom to the surface and is same for all of the atoms.
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1. Calculate the T = 0 value of the chemical potential µ for these atoms as a function of the area
density N/A, binding energy ε0, and mass m.

2. At temperatures very close to T = 0 (i.e., so that you can ignore any temperature dependence of the
quantities you might calculate for the adsorbed fermions,) find the areal coverage N/A of adsorbed
atoms as a function of the density ρ ≡ N ′/V ′ and temperature T of a dilute (three-dimensional) gas
of the same atoms that is in thermal equilibrium with the adsorbed gas. Assume that the dilute gas
can be treated classically at the given temperature with the partition function

Z =
1

N ′!

(
m

2π~2β

)3N ′/2 (
2V ′
)N ′

and β ≡ 1/kBT .

Problem 150 (Equations of state)

Consider an ideal classical gas of rigid dipolar molecules in an electric field E. The dipole moment of each
molecule is µ. Calculate the linear dielectric constant ε of the gas as a function of temperature T and
density ρ = N/V .

Problem 151

In experiments on the absorption spectrum of gases at finite temperature, atoms are always moving either
towards or away from the light source with distribution of velocities vx . As a consequences the frequency
of the photon seen by an electron in a Bohr atom is Doppler shifted to a value νd according to the classical
formula

νd = ν0 (1 + vx/c)

1. Write down the normalized Maxwell distribution for vx.

2. Determine the distribution function g(νd) for the fraction of gas atoms that will absorb light at
frequency νD

3. Determine the fractional linewidth(
∆ν

ν0

)
rms

≡

√√√√〈(νd − ν0)2

ν2
0

〉

4. Estimate the fractional linewidth for a gas of hydrogen
(
M ≈ 938MeV/c2, 1eV/kB ≈ 11600K

)
Problem 152

A system obeys the van der Waals equation of state,

P =
RT

v − b
− a

v2

where P is pressure,v is the molar volume, T is the absolute temperature, and R, a, and b are all constants.
The molar heat capacity at constant volume cV is given as a constant independent of P , T , and v.

1. One mole of this system is expanded isothermally at temperature T from an initial volume vi to a
final volume vf . Find heat transfer to the system in this process.
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2. One mole of this system is expanded from an initial volume vi to a final volume vf in a process that
conserves the enthalpy H = U+PV . Such a process is often referred to a Joule-Thomson expansion,
or a “throttling” process. Determine the change in the temperature T if the change in the volume
is small vf − vi � vf

Problem 153

The He3 melting curve (solid-liquid coexistence curve) is shown in the figure (left). The general shape
of the melting curve is well understood in term of the physical properties of solid and liquid He3 and the
Clausius-Clapeyron equation

dP

dT
=

∆s

∆v

where ∆s and∆v are the molar entropy and molar volume differences between the two phases.

At low temperatures the molar volumes of the solid and liquid do not vary substantially along the coex-
istence curve such that below 40mK vl − vs is essentially a constant at 1.3cm3/mole.

The thermal properties of the solid can be modeled by a system of N independent 2-level systems with
the energy gap of 1mK, where N corresponds to the number of He3 atoms.

The thermal properties of the liquid at low temperatures are well described by a degenerate Fermi gas. In
particular, the heat capacity of the liquid at temperatures below 40mK is known to be linear in temper-
ature, i.e. cv ∝ T .

You are given that the slope of the melting curve at P0 = 33.66 bar and T0 = 20mK is

dP

dT
= −38.43 bar/K

1. Estimate the molar entropy of the solid ss at P0 and T0.

2. Using your result and the Clausius-Clapeyron equation, estimate the molar entropy sl of the liquid
at P0 and T0.

3. Draw entropy as a function of the temperature along the P0 isobar from T = 0K to T = 0.1K.
Important features in your graph should be labelled with the numerical values. Please use the graph
provided.
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Problem 154

The energy-momentum dispersion relation for electrons in the extreme relativistic limit
(
ε� m0c

2
)

is well
approximated by

ε = pc

Assuming this relation is valid at all energies of interest, find:

1. The Fermi energy εF at absolute zero in terms of the gas density, n = N/V .

2. The average energy per electron in the ground state of the gas at T = 0 as a function of εF .

3. Derive the equation of state for an electron gas in the extreme relativistic limit which is valid at any
temperature when the dispersion relation given above applies.

Problem 155

A gas consists of two molecular types, A and B, which are intermixed in a volume V at a constant
temperature T . This is a non-ideal gas, but each molecular type acts as an independent indistinguishable
particle system so that the energy for each type A molecule is given by

εA =
p2

2mA
+ αnA

and for each type B molecule as

εB =
p2

2mB
+ αnB + ε0

Here α is a constant and ε0 is a constant energy for a B-type molecule. The number densities of molecules
A and B are nA = NA/V , and nB = NB/V respectively.

1. Determine the N -particle classical canonical partition function for this mixed gas. Since the partition
function is to be determined classically, you can assume that there is only one state per volume of
the phase space h3 for each of the two types of molecules.

2. Determine the Helmholtz free energy of this gas form the partition function.

3. Now, allow A and B type molecules to interconvert by simple reaction A 
 B (e.g. B might be
excited state of A and vice verse). Also assume A and B have equal masses. Given that A and B
are in equilibrium (at fixed V , T , and total number of molecules, N = NA + NB), determine the
equilibrium ratio, R = NA/NB.

[Hint: Stirling’s approximation, ln N ! = (N ln N)−N . ]

Problem 156

A particular ideal gas is characterized by the following equations of state:

PV = NkBT and U = cNkbT,

where c is a constant. The gas is used as a medium in a heat engine/refrigerator whose cycle an be
represented on a P − V diagram as shown in the figure.
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1. Determine the change in the internal energy of the gas for one complete cycle (A→ B → C → D → A).

2. Determine the equation of the adiabats.

3. Determine the thermodynamic efficiency of the above heat engine. Express your answer in terms of
c, P1, and P2.

Problem 157

Consider a monolayer He3 (spin= 1/2) film of a large area A, and assume that it behaves like a two-
dimensional ideal gas.

1. Determine the Fermi energy (T = 0) as a function of the coverage density σ = N/A.

2. Determine the chemical potential (T 6= 0) as a function of the coverage density σ = N/A.

3. Determine how the heat capacity scales with temperature as T → 0 using the fact that the derivative
of the Fermi function is sharply peaked around εF in this limit.

Problem 158

Consider a non interacting gas of He4 (spin= 0) confined to a film (i.e., confined in ẑ direction, but infinite
in the x and y directions). Because of the confinement, the pz component of the momentum is quantized
into discrete levels, n = 0, 1, . . . so that the energy spectrum is

εn(p) =
p2

2m
+ εn

where p is the two-dimensional (px, py) momentum, and 0 = ε0 < ε1 < . . . εn < . . .

1. Write down the density of states for the system.

2. Write down the expression which determines the density of He4 atoms n as a function of a chemical
potential µ and temperature T . Evaluate integrals explicitly.

3. As T → 0, i.e. T � ε1 find the limiting value of µ and how the specific heat depends on T in this
limit.

4. Determine µ(N,V, T )) in the limit |µ| � T (classical limit) assuming εn = εn.
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Problem 159

A two dimensional fictitious “polymer” is constructed as follows: It consists of N identical monomers
of length a each, joined into a chain. (See figure). Starting from the left end of the “polymer”, which
corresponds to the coordinates x = 0, y = 0, each new monomer added prefers to extend the “polymer” to
the right (i.e., to the +x direction) with energy ε = 0, or upward (i.e., to the +y direction), with energy
ε = J > 0. It is given that no monomer added will extend the polymer to the left or downward.

1. A macro state of this “polymer” is characterized by N and m, where m denotes the number of
monomers which extend the “polymer” upward. Find the entropy of this macro state as a function
of N and m. Assume that both N and m are � 1, and use Stirling’s formula ln N ! ≈ N(lnN − 1)
to simplify your result.

2. Write down the free energy of this macro-state of the “polymer”, as a function of N , m, and the
temperature T .

3. From minimizing this free energy, calculate the equilibrium value of m as a function of N and T .

4. Calculate the equilibrium value of the free energy as a function of N and T , and from which,
calculate the specific heat of this “polymer” as a function of N and T . (Note: Simplify your
expression for the free energy to something quite simple before calculating specific heat! Make sure
your result has the right dimension, or else you get no credit for this point.)

5. Show that in the limit kBT � J , the specific heat of this “polymer” is inversely proportional to T 2,
and obtain the coefficient of proportionality.

Problem 160

1. Explain why a three dimensional ideal Bose gas exhibit Bose-Einstein conden- sation at finite tem-
perature, and yet in two or one dimension, an ideal Bose gas cannot undergo a Bose-Einstein conden-
sation at any finite temperature. (Or, to put it in another way, they can only undergo the transition
at T = 0, which is of course, meaningless, since the absolute zero temperature can never be reached.)

2. Show that in two-dimensions, the relation between the chemical potential µ, the total number of
particles N , and the absolute temperature T , of an ideal gas, can be evaluated in close form (i.e.,
with the momentum or energy integral doable in close form).
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Problem 161

Consider a system of fixed volume V in thermal equilibrium with a reservoir at temperature T .

1. Evaluate the mean-squared fluctuations in the system’s energy〈
(∆E)2

〉
=
〈

(E − 〈E〉2)
〉

in terms of its partition function Z(T, V ).

2. Show that these mean-squared fluctuations may be expressed in terms of the system’s heat capacity
as 〈

(∆E)2
〉

= kBT
2CV

3. How does the ration of the RMS fluctuation to the mean energy depend on the number of particles
if the system is a classical ideal gas?

4. By expanding S(E, V ) in a Taylor series around the mean energy 〈E〉, find the expression for the
mean-squared entropy fluctuation

〈
(∆S)2

〉
in terms of the heat capacity CV and the Boltzmann

constant kB.

Problem 162

1. Find an expression for the chemical potential µg of an ideal gas as function of P and T .

2. Consider an absorbent surface having N sites, each of which can adsorb one gas molecule. This
surface is in contact with an ideal gas with chemical potential µg (determined by the pressure P and
temperature T ). Assuming that the absorbed molecule has energy −ε0 compared to one in a free
state, find the grand partition function (sometimes called the grand canonical sum) that describes
the absorbing surface in terms of T , N , ε0, and µa, the chemical potential of the absorbed molecules.

3. Calculate the covering ration R(P, T ), i.e., the ration of the absorbed molecules to the total number
N of absorbing sites on the surface.
[Hint: What is the relation between the chemical potential of the molecules in the gas µg and these
absorbed µa?

(1 + x)N =

N∑
n=0

N !

n!(N − n)!
xn

]

Problem 163

Consider a system of n classical noninteracting identical homonuclear diatomic molecules enclosed in a
box of volume V , and held at temperature T . The Hamiltonian of a single molecule is taken to be:

H ( #»p1,
#»p2,

#»r1,
#»r2) =

1

2m

(
#»p1

2 + #»p2
2
)

+
1

2
κ| #»r1 − #»r2|2

where #»p1, #»p2 and #»r1, #»r2 are the momenta and positions, respectively, for the two indistinguishable atoms
comprising a molecule, and κ is an effective spring constant. Determine the following:
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1. The classical partition function for a single molecule. Express your answer in terms of the thermal
wavelength, λth = h/

√
2πmkBT .

[ HINT:
∫∞

0 dx exp(−ax2) =
√
π/4a ]

2. The mean square molecule diameter
〈
| #»r1 − #»r2|2

〉
3. The Helmholtz free energy for N molecule system.

Problem 164

There are approximately (NM)n/(n!)2 ways of removing n atoms from a lattice with N sites and distribute
them over M interstitial sites to obtain n Frenkel defects. The energy of an atom at an interstitial site is
+ε relative to the energy at the lattice site, taken as zero.

1. Obtain an expression for the (Boltzmann) entropy SB(E) of the system in the microcanonical en-
semble.

2. Calculate the temperature T as a function of E, and find the most probable excitation energy E
and defect number n as a function of T .
[Hint: You may need to use: ln N ! ≈ (N ln N)−N . ]

Problem 165

Consider a system of noninteracting electrons constrained to have following density of states:

ρ(ε) = constant = D, ε ≥ 0;

ρ(ε) = 0, ε < 0;

where ε is the one particle energy, and ρ(ε) is the density of states for either spin.

1. Calculate the Fermi energy εF at temperature T = 0, in terms of D and the number of electrons, N .

2. Find U0, the total energy of this electron system at T = 0.

3. Calculate the chemical potential µ at arbitrary temperature T , assuming N and D are fixed. Find
an expression in terms of D, N , and T (an exact solution, rather than an expansion). Show also
that your expression reduces to the result of the first part in the limit T → 0.

4. Find CV , the heat capacity at constant volume, in the small-T limit (kT � N/D) and show that
CV is proportional to T in this regime. Assume that constant volume means D does not change.
[Hint: solve first for U − U0 in this limit.]

Problem 166

The gas of N identical particles is in a volume V at temperature T . The particles interact weakly through
two-body potentials

Uij = D exp
(

( #»ri − #»rj)
2 /a2

)
,

where D and a are constants, and #»ri’s are particles’ coordinates. Determine the leading correction in
D to the (Helmholtz) Free energy F of the system at high temperatures, and the resulting change in the
pressure of the gas.
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Problem 167

Consider a chemical reaction AB ⇐⇒ A+B. Treating the system as a multicomponent ideal gas, show
that

nAB
nAnB

=
V zAB
zAzB

where nAB, nA, nB are the concentrations (number of molecules per volume) for each molecule re-
spectively, ZAB, ZA, ZB are the partition functions per molecule and V is the volume. Note, that for
equilibrium,

∑
i µidNi = 0 where the µi are the chemical potentials of the various species and the Ni are

their numbers.

Problem 168

1. Sketch the temperature dependence of the chemical potential (at fixed N and V ) i the whole
temperature range from T = 0 to T = ∞, for a three dimensional non-relativistic ideal Fermi gas
(spin 1

2 ), and a three-dimensional ideal Bose gas(spin 0).

2. Derive, using statistical mechanics, a formula describing the high temperature limiting behaviour of
each of these two curves (to leading order in the expansion only); the independent variables should
be T , N , and V , and no unknown constants should appear in your result.

3. Find the zero temperature (T = 0) limiting values of these two curves as function of N and V , and
state the qualitative initial T -dependence of these two curves as T is increased from zero.
[Hint: ∫ ∞

−∞
e−x

2
dx =

√
π

ln N ! ≈N(lnN − 1) forN � 1

]

Problem 169

Consider a molecular clock that can take on four angular positions θ = n(π/2), for n = 0, 1, 2, 3. Its energy
is given by

E = −Acosθ

It is subject to thermal fluctuations at a temperature T .

1. Determine the value of 〈cosθ〉. Give the high-temperature and low-temperature limits. Interpret
your results physically.

2. Determine the value of
〈
cos2θ

〉
. Give the high-temperature and low-temperature limits. Interpret

your results physically.

Problem 170

A system of N non-interacting Fermi particles with spin 1/2 and mass m, is confined to a volume V . It
is at temperature T = 0. The particles have an energy-momentum dispersion given by ε = p2/2m .

1. Determine the chemical potential.
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2. Determine the internal energy.

3. The original volume V adjoins a vacuum region with volume δV � V . Both chambers are thermally
isolated from the environment. The Fermi gas now freely expands into the vacuum region. Assume
that the internal energy as a function of the temperature can be parametrized at low temperatures
by

U = α(V ) + β(V )T 2

where α(V ) and β(V ) are functions of volume. Determine the final temperature of the gas after the
expansion. Your answer should be expressed in terms of the functions α(V ) and β(V )

4. Determine α(V )

5. Determine β(V )
[ Hint: The following integral expressions may prove useful:∫ ∞

0

φ(x)dx

exz−1 + 1
=
∞∑
k=0

(
22k−1 − 1

22k−2

)
ζ(2k)Φ(2k)(ln z) ≈ Φ(lnz) + ζ(2)Φ(2)(ln z) +

7

4
ζ(4)Φ(4)(ln z),

where Φ(ξ) =
∫ ξ

0 φ(x) dx, and Φ(2n)(ξ) = ∂2nΦ(x)
∂x2n

|x=ξ.

∫ ∞
0

xn−1dx

exz−1 + 1
= Γ(n)

∞∑
k=1

(−1)k+1 z
k

kn∫ ∞
0

xdx

ex + 1
=
π2

12
,

∫ ∞
0

xn−1dx

exz−1 − 1
= Γ(n)

∞∑
k=1

zk

kn∫ ∞
0

xn−1dx

exz−1 − 1
= Γ(n)

[
Γ(1− n)[−ln z]n−1 +

∞∑
k=0

(−1)kξ(n− k)
[ln z]k

Γ(k + 1)

zk

kn

]
]

Problem 171

Consider a relativistic quantum Fermi gas, in three dimensions, with spin 1/2. The energy of a relativistic
fermion is ε = cp, where p is the momentum.

1. Find an integral expression for the internal energy U of such a gas.

2. Find the equation of state relating volume, pressure and internal energy of this gas.
[Hint: Find an expression for the thermodynamic potential Ω for the grand canonical ensemble, and
relate this to U .]

Problem 172

The Joule-Thomson process is the flow of a gas through a porous membrane separating two chambers, in
which constant pressure p1 and p2 is maintained by external conditions. In such a process the enthalpy
H = U + PV is conserved.

1. Given that a change of temperature and pressure is small, it is regulated by the derivative
(
∂T
∂P

)
H

.
Show that this derivative is: (

∂T

∂P

)
H

=
1

CP

[
T

(
∂V

∂T

)
P

− V
]
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2. Calculate
(
∂T
∂P

)
H

for the Van-der Waals gas with the equation of state:

(P + an2)(1− bn) = Tn

where n = N/V is the density, and a and b are positive constants (also 1 − nb is supposed to be
positive). In this part assume CP is given, and leave your answer in terms of this parameter.

Problem 173

Find the final temperature T ′ of a Van-der Waals gas expanding to the vacuum when it changes its volume
from V to V ′ > V , if the initial temperature was T . Assume that no heat is exchanged with the container.
You may assume that CV is a given constant.
For Van-der Waals gas the equation of state is

(P + an2)(1− bn) = Tn

where n = N/V is the density, and a and b are where n = N/V is the density, and a and b are positive
constants (also 1− nb is supposed to be positive).

Problem 174

In the Debye model of the phonons (sound quanta) in a solid it is assumed that there exist two degenerate
transverse branches and one longitudinal branch of sound oscillations. The oscillation frequencies ωt,
ωl are linear isotropic functions of the wave vector ωl,t(

#»q ) = cl,tq where cl and ct are the velocities of
longitudinal and transverse sound, respectively. The frequencies of each branch are assumed to be limited
by a maximal frequency ωD (Debye frequency). The value of ωD is determined by equating the total
number of degrees of freedom 3Nj (j is the number of particles per unit cell) to the number of phonon
states

1. Find the total number of states for transverse and longitudinal phonons, Nt and Nl.

2. Find ωD

3. Find the density of phonon states as a function of energy ε

4. Find the integral form for the energy and specific heat CV very low temperatures and at high
temperature.

Problem 175

Consider a system described by energy states with energies En. Using the canonical ensemble at temper-
ature T ,

1. Derive an expression for the root-mean-square fluctuation of the internal energy, ∆E|rms ≡
√
〈(∆E)2〉

in terms of En, where ∆E = En − 〈E〉.

2. Determine the relationship between the specific heat at constant volume and ∆E|rms

3. How does the relative fluctuation in energy, ∆E|rms/ 〈E〉 depend on volume for large system?

4. Under what conditions might you expect the relative fluctuation in energy to be large?
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Problem 176

Consider N particles of a non-interacting spin-1 Bose gas of mass m. They are confined in three dimensions
to a volume V . Take ε = p2/2m

1. In the high-temperature, low-density limit, determine the partition function, the free energy, and
the entropy.

2. In 1926, Einstein predicted that, at sufficiently low temperatures, a non-interacting Bose gas can
undergo condensation in which the occupation number N0 of the p = 0 state is macroscopic: i.e.
N0/N is finite as N → ∞. Taking the chemical potential to be zero, derive N0/N as a function T .
Determine TE , the Einstein condensation temperature, from the condition that N0(TE) = 0.

Any integrals that arise should be put in dimensionless form, but need not be evaluated.

Problem 177

Consider N particles of a non-interacting spin-1/2 Fermi gas of mass m confined to a two dimensional
plane of area A. Take ε = ε0(p/p0)3/2

1. Determine the T = 0 energy of this Fermi gas.

2. Determine the T = 0 surface pressure, σ, of the Fermi gas. This surface pressure is the force per
unit length acting on the confining boundary of the gas.

Problem 178

Consider an atom trap containing two electrons, where such a large magnetic field is applied, so that only
spin-up states are occupied. The spin-down states are inaccessibly high in energy, so they need not be
considered in this problem. The lowest energy one-electron state of the trap has energy E0 and is doubly
degenerate. The first excited one-electron state has energy E1 and is four-fold degenerate. To simplify
the math set E0 = 0.

1. Find the thermal average energy of the two electrons.

2. Obtain an approximate expression for the previous result in the high temperature limit,
i.e., |E1 − E0| � kBT . Find the heat capacity of the electrons in this limit.

3. Find the thermal average energy and heat capacity of the two electrons also in the low temperature
limit, i.e. |E1 − E0| � kBT

Problem 179

Consider a spin-1 Bose gas with energy-momentum relation ε = v|p| in a space of dimensionality D = 1
and D = 2.

1. In one of these spaces Bose-Einstein condensation will occur, and in the other case it won’t. Deter-
mine which is which, and why. Note: For this part, you need not explicitly evaluate the integrals
involved, but merely verify if they are well-behaved.

2. For the space in which Bose-Einstein condensation occurs,find the Bose-Einstein transition temper-
ature TBE . Express your results in terms of a dimensionless integral, which you need not evaluate.

3. Find the fraction of Bose-Einstein particles as a function of temperature T , for T < TBE .

59



Problem 180

Consider a soap film supported by a wire frame of fixed length l along one direction and of varying length
x along the other direction. Because of surface tension σ, there is a force 2σl tending to contract the
film.Take σ(T, x) = σ0 − αT ,where σ0 and α are independent of T and x.

1. In one sentence, explain why the force is 2σl, rather than σl.

2. Express the energy change dE of the film due to work δW associated with the surface tension and
heat δQ absorbed by the film through the atmosphere.

3. Calculate the work W done on the film when it is stretched at a constant temperature T0 from length
0 to x.

4. Calculate the entropy change of the film when it is stretched at constant temperature T0 from length
0 to x.

5. Calculate the change in energy ∆E = E(x)−E(0) when the film is stretched at constant temperature
T0 from length 0 to x.

Problem 181

Consider a cyclic engine operating with one mole of an ideal monoatomic gas in the following reversible
cycle:

a→ b: expansion at constant pressure, the temperature going from Ta to 3Ta.

b→ c: expansion at constant temperature 3Ta, the volume going to 4Va.

c→ d: cooling at constant volume 4Va, the temperature going to Ta

d→ a: compression at constant temperature, the volume going from 4Va to Va.

1. Sketch the cycle on a P − V diagram.

2. Find the entropy change and the change in internal energy of the gas for each part of the cycle.
Find the net entropy change and the net change in internal energy over the full cycle.

3. Calculate the thermodynamic efficiency of this engine and compare it to the ideal efficiency of
an engine operating between Ta and 3Ta.

4. What is the net change of the entropy of the hot thermal bath during one cycle?

5. What is the net change of the entropy of the cold thermal bath during one cycle?

Problem 182

An ideal monoatomic gas is composed of N atoms each of which has additional degrees of freedom that
must be taken into account when calculating the thermodynamics properties of the gas. (For example,
the atoms might have electronic excited states.)

For the following questions, use Zint(T ) to denote the partition function of the internal degrees of freedom
of a single atom and Z0(T, V,N) to denote the canonical partition function of an ideal monoatomic gas
composed of N atoms with no internal degrees of freedom.
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1. Determine the difference between the Helmholtz free energy of the gas composed of atoms with inter-
nal degrees of freedom, F (T, V,N) = U −TS and the Helmholtz free energy of an ideal monoatomic
gas composed of atoms with no internal degrees of freedom, F0(T, V,N); i.e. determine

∆F = F (T, V,N)− F0(T, V,N)

in terms of Z(T, V,N) and Zint(T )

2. Similarly, determine the corresponding difference in the entropies

∆S = S(T, V,N)− S0(T, V,N)

3. Determine the corresponding difference in the chemical potentials

∆µ = µ(T, V,N)− µ0(T, V,N)

4. Determine the corresponding difference in the pressures

∆P = P (T, V,N)− P0(T, V,N)

5. Evaluate Zint(T ) for an atom with two internal energy states separated by energy ∆ε.

Problem 183

N spin 1/2 fermions with positive charge +e placed in a magnetic field with field strength B in the ẑ-
direction. The single particle energy levels are Landau levels, are characterized by two quantum numbers
and can be written as

εn(pz) = (n+ 1/2)~ωc +
p2
z

2m

where pz (−∞ ≤ pz ≤ ∞) is the continuous projection of the momentum on the ẑ direction and non-
negative integer n = 0, 1, 2 . . . is associated with the motion in x − y plane. Here m is the mass of the
particle and ωc = eB/mc is the cyclotron frequency.

The degeneracy of each level is given by

g[εn(pz)] =
mωc
2π~

A

where A = V/L is the area of the system in the x − y plane, V is the volume of the system, and L is
the length of the system in the ẑ direction.
Assuming the BOLTZMANN statistics in canonical ensemble is valid, determine

1. The equation of state.

2. The magnetization of the gas.

3. What condition on the chemical potential must be true so that the use of the Boltzmann statistics
is justified?
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Problem 184

A polymer is a molecule composed of a long chain of identical molecular units, called monomers. For
simplicity, assume the polymer consists of a long chain of N rod- like monomers, each of length l, attached
end to end. Assume that the connectors between the monomers are completely flexible so that each
monomer can make any angle with respect to its neighbors. One end of the polymer is fixed while the
other end is attached to a weight (mg) providing a constant force in the negative ẑ direction. Except for
an arbitrary constant which can be ignored, the potential energy of any configuration of the polymer can
be written as,

E(θ1, φ1, θ2, φ2, . . . , θN , φN , ) =
N∑
i=1

mgl(1− cos(θi))

where θi, φi represent angles in the spherical coordinates that the ith monomer makes with the negative
ẑ direction. Each angle can take all possible values 0 < θi < π and 0 < φi < 2π.

1. Determine the classical canonical partition function Z(T,N) for this polymer in contact with a
temperature bath at temperature T .

2. Determine the thermodynamic energy U(T,N) and entropy S(T,N) of the system. Find the tem-
perature dependence of U and S for very small and very large temperatures.

3. If the polymer is isolated from the temperature bath and the mass at the end of the polymer
is increased adiabatically from its initial value of m to a final value of 2m, determine the final
temperature of the polymer.

Problem 185

A gas of N identical non-interacting, spin-1/2 fermions in three dimensions obey the dispersion relation
ε = Apα, where p is the magnitude of the momentum, A and α are positive constants. assuming that
these particles are in a box of volume V with periodic boundary conditions.
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1. Calculate the density of states of this gas as a function of ε.

2. Calculate the Fermi energy of this gas as a function of n ≡ N/V , which is the density of the gas.

3. Write down as many integral expressions as needed which can, together and implicitly, give the
internal energy U of this system as a function of N , V , and the temperature T . You are not required
to evaluate these expressions in the order to find U(N,V, T ) explicitly.

4. Take the high temperature limit of the expressions you gave in the previous part, and then evaluate
them in order to obtain U(N,T, V ) explicitly in this limit only.

[Hint:
∫∞

0 xs−1e−sds = (s− 1)Γ(s− 1)]

Problem 186

Consider a dipole with a fixed magnitude µ = | #»µ |, in a magnetic field
#»

B = Bẑ with interaction energy
U = − #»µ.

#»

B. Assume the dipole is in equilibrium with a thermal reservoir at temperature, T .

1. Without doing any calculations but using only simple physical reasoning, describe in words the
behavior of 〈 #»µ〉, the thermal average value of #»µ , in the limit as the temperature approaches zero,
T → 0.

2. If #»µ is treated classically and can point in any direction in 3-dimensional space, find 〈 #»µ〉 as a function
of temperature. In particular, what are the values of 〈µx〉, 〈µy〉, 〈µz〉 ? Show that as T → 0, #»µ has
the behavior predicted in the previous part.

3. Now assume that magnetic moment is that of a spin-1/2 particle with non- vanishing gyromagnetic
ratio γ, so it can only point parallel or anti-parallel to

#»

B. Find 〈 #»µ〉 as a function of temperature
and show that it has the expected behavior as T → 0. Also show that

χ =

(
∂ 〈µz〉
∂B

)
T

→ 〈
#»µ〉 . #»

B

| #»B|2

as T →∞. (Keep the leading non-trivial term.)

Problem 187

Consider a box of volume V containing electron-positron pairs and photons at temperature T = 1/kBβ.
Assume that the equilibrium is established by the process

γ 
 e+ + e−

This process does not occur in free space, but could be considered to be catalysed by the walls of the box.
Ignore the walls except insofar as they allow this process to occur and answer the following questions in
sequence:

1. By minimizing the appropriate potential at fixed T and V give the thermodynamic proof to show
that

µγ 
 µe+ + µe−

which relates the chemical potentials of the three types of particles.

2. What should be the value of µγ in view of the fact that there is no number conservation for photons?
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3. What should be the values of µe+ and µe− be if all the positrons and electrons in the box are due to
pair creation? (Remember that a positron and an electron have the same rest mass me.)

4. Using the relativistic energy of the particles, write down the integral expression for the number of
e+ in term of T , V , and µe+ and for the number of e− in term of T , V , and µe− .

5. Using the values of µe+ and µe− from the third part and the integral expressions from the fourth
part, calculate the mean number of electron-positron pairs, in the two limits kBT � mec

2 and
kbT � mec

2. (You may leave your answers in terms of dimensionless definite integrals.

Problem 188

A box of volume V contains N molecules of a classical gas. The molecules can either be bound to the
walls of the box with binding energy εb and dispersion relation of a 2D gas ε(p) = (p2

x + p2
y)/2m, or move

freely within the volume of the box with dispersion relation of a 3D gas ε(p) = (p2
x + p2

y + p2
z)/2m.

Find what portion of the molecules are stuck to the surface. Obtain an explicit results in two limit-
ing cases of low and high temperature.

Problem 189

A system consists of 2 single particle states with energies ε0 and ε1 (ε0 < ε1) that can be independently
occupied by spin-1/2 (non-interacting) fermions.

1. Determine the grand partition function for this system.

2. Determine the average number of fermions in the system as a function of the temperature, T , and
the chemical potential, µ.

3. Assume that the average number of particles in the system is two. Determine the limiting value of
the chemical potential in the low temperature limit (T → 0).

[Hint: Convince yourself that based on the low temperature behavior of the Fermi function, the
value of µ should lie between ε0 and ε1. Then determine its precise value. ]

4. Assume that the average number of particles in the system is three, determine the limiting value of
the chemical potential in the high temperature limit.

[Hint: Knowing that at the high temperatures, the particle occupancy should be described by
a classical probability, determine the precise value of µ.]

Problem 190

A single-particle Hamiltonian has six degenerate eigenstates at energy ε1, and another six degenerate
eigenstates at energy ε2 > ε1. All other eigenstates are of very high energy relative to kBT . Eight non-
interacting identical fermions are described by this Hamiltonian. (The spin degeneracy is already included
in the given degeneracies.)

1. Compute the ground state energy and degeneracy for this eight-fermion system.

2. Repeat for the first excited state of this system.

3. Repeat for the second excited state of this system.

64



2 Graduate level

4. At low temperatures, where kbT < 0.1(ε2 − ε1), write down an approximate expression for the
canonical partition function of this system, which can give the leading non-trivial-order contribution
to the specific heat.

5. Repeat for the average total energy of the system.

Problem 191

1. Derive the grand thermodynamic potential ΩG(T, V, µ) for an ideal non-relativistic Maxwell-Boltzmann
gas in three dimensions, assuming that the particles have no internal degrees of freedom. From the
result,obtain S(T, V, µ) and N(T, V, µ) , and show that they obey the relation

S = N

(
5kB

2
− µ

T

)
2. Begin with the entropy expression for an ideal gas:

S = −kB
∑
j

[〈nj〉 log 〈nj〉+ (1− 〈nj〉) log(1− 〈nj〉)]

Show that in the high temperature limit it reduces to the Maxwell-Boltzmann result obtained in the
first part.

Problem 192

A solid thin rectangular parallelepiped has dimensions a× b× b, where a � b. Assume that it has three
types of acoustic vibrations (phonons), all having velocity v. Thus ω = vk for all displacements of the

form #»u = #»u 0e
i(

#»
k . #»r−ωt), with #»u 0 along

#»

k for the longitudinal mode and #»u 0 normal to
#»

k for the two
transverse modes.

1. Compute the total density of states dN/dω (number of modes per unit angular- frequency range).

2. Define the Debye frequency ωD by
∫ ωD

0 (dN/dω)dω = 3N , where N is the number of atoms. Find
ωD. (Note, that N and N have different meaning here!)

3. Assuming that dN/dω = 0 for ω > ωD, find the internal energy U(T ) due to the phonons in this
solid. You may express your answer in terms of a dimensionless unevaluated integral.

4. Find the specific heat CV (T ) due to the phonons in the solid. You may express your answer in terms
of a dimensionless unevaluated integral.

5. Evaluate the cross-over temperature Tx below which the system must be treated as two dimensional.

Problem 193

N electrons in a box of dimensions L × L × L obey the energy-momentum relation ε = p2/2m, where m
is the electron mass. The system is at absolute zero temperature.

1. Find the maximum occupied momentum pF in terms of N and V = L3.

2. Find the internal energy U of the system as function of N and V .

3. Find the pressure P from U .

4. Calculate the rate at which x̂ component of momentum px crosses a surface area A = L2 perpendic-
ular to x̂ in the +x̂ direction due to all N electrons.

5. How does pressure relate to the rate calculated in the previous part? Give physical explanation.
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Problem 194 Rotating Gas

The canonical partition function of a classical, monoatomic, ideal gas in a cylinder rotating with angular
velocity ω is given by (see Kubo chapter 2, problem 4)

Z =
1

N !

[
πR2L

(
2πmT

h2

)3/2 ex − 1

x

]N
where x = mω2R1

2T .

1. Find the angular momentum M of the rotating gas as a function of temperature and angular velocity.

2. Consider the limits of the obtained expression for M corresponding to very high and very low
temperatures. Give the physical interpretation of obtained results. What is the criterion of high and
low in this case?

3. How much energy one should supply to heat the gas from a very low temperature T0 to a very high
temperature Tf? Denote the initial angular velocity of the cylinder as ω0 . Neglect the moment of
inertia of the cylinder (vessel) itself.

Problem 195 Quantum Oscillator

A quantum particle of charge q is in the oscillator potential V (x) = mω2

2 x2 in 1D at temperature T.

1. Find the heat capacity of this system.

2. Find the electric dipole susceptibility of the system. (d = −(∂F/∂E)V,N,T , χ = (∂d/∂E)V,N,T ).

3. For the oscillator state ψn in the presence of electric field E calculate xn = 〈ψn|x̂|ψn〉, and then
average displacement x̄ =

∑
n xnwn

Problem 196 Bricks

1. There are three identical bricks with temperatures T1, T2, and T3. You are allowed to use any
number of ideal engines, but you cannot supply external heat or work to the system. What is the
highest temperature you can give to one of the bricks. Give answer as a root of a single algebraic
equation. (You do not need to sole the equation.)

2. Now you have N identical bricks with temperatures Ti, i = 1 . . . N . What is the highest temperature
you can give to one of the bricks. Give answer as a root of a single algebraic equation. (You do not
need to solve the equation.)

3. If all of the initial temperatures are in a small interval T0 < Ti < T0 + ∆T , where ∆T � T0, find
the highest temperature of previous part for N →∞.

Problem 197 String

A 3D string of length L has a temperature dependent tension f(T ).

1. What is the average value of the amplitude aαk of the kth harmonic of a small deformation of the
string?

2. What is
〈
aαka

β
k′

〉
for two harmonics k and k′ ?

3. Calculate
〈
e

#»n #»a k
〉
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Problem 198 Membrane

A circular membrane has a temperature dependent surface tension σ(T ). How does the heat capacity of
the membrane depend on the small displacement h of the center of the membrane perpendicular to the
membrane?

Problem 199 Membrane

A circular membrane has a temperature dependent surface tension σ(T ). How does the heat capacity of
the membrane depend on the small displacement h of the center of the membrane perpendicular to the
membrane?

Problem 200 Circle

A body undergoes a thermodynamic reversible cycle along the path given by

(P − P0)2

P 2
0

+
(V − V0)2

V 2
0

= r2

where r � 1 . The adiabatic compressibility βS , the heat capacity at constant pressure CP , and the
coefficient of thermal expansion α of the body at P0, V0 are known.

1. What is the total change of the energy of the body after a full cycle?

2. What is the total change of the entropy of the body after a full cycle?

3. What is the total work done by the body during the full cycle?

4. On the path ABC the body receives heat. On the path CDA it gives up heat. What is the angle φ
between the line AC and the axis V ?

5. What is the efficiency of this engine?

6. What would the efficiency of this engine be if the body were a monoatomic ideal gas?
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Problem 201 Gas and vacuum

A cylinder of volume V0 + V1 is divided by a partition into two parts of volume V0 and V1, where V1 �
V0. The volume V0 contains 1 mole of a gas at temperature T0 and pressure P0. The volume V1 has
vacuum. You know the gas’s coefficient of thermal expansion α(P0, T0), its βT (P0, T0), and its heat
capacity CV (T, V ). At some moment the partition disappears.

1. What will be the temperature of the gas after it equilibrates?

2. A piston now adiabatically returns the gas back to the volume V0, what will be it’s temperature?

3. What are these results for the ideal gas?

Problem 202 Distribution, average, and fluctuations

You through a dice N times count the number of times you have a “3”. You repeat this activity many
many times.

1. With what probability the number of 3s is n?

2. What is the average number of 3s?

3. What is the standard deviation (r.m.s. fluctuation)?

Problem 203 Distribution function of an oscillator

A classical one dimensional oscillator (V (x) = mω2x2

2 ) has a statistical distribution function %(p, q) =

Ae−E(p,q)/T , where A is a normalization parameter, T is a parameter which is called temperature, and
E(p, q) is the oscillator’s energy.

1. Find the normalization constant A.

2. Find the average coordinate of the particle.

3. Find the average momentum of the particle.

4. Find the r.m.s. fluctuations of the particle coordinate and momentum.

5. Find the average energy of the particle. Find the heat capacity.

6. Find the distribution function for a quantity f = f(p, x), where f(p, x) = p− ωmx

Problem 204 Traveling frog

Consider a one dimensional frog. After every τ seconds it hops with probability 1/2 one meter to the left
and with probability 1/2 one meter to the right. At t = 0 the frog is at x = 0.

1. Consider a function p(x, t) – the probability for the frog to be at point x at time t. Find p(x, t+ τ).

2. Consider a limit of large distances and long times. Find a differential equation for p(x, t).

3. What is the initial condition for this equation?

4. Solve the equation.
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5. What is the average coordinate of the frog? How does it change with time?

6. What is the average deviation of the frog’s coordinate? How does it change with time?

7. Repeat all the steps for the situation when the frog hops with probability q to the left and probability
1− q to the right.

Problem 205 Electrons in wire

A current I flows in the wire. Treat electrons as point like classical particles.

1. What is the probability that exactly n electrons cross through a wire cross- section in time T .

2. What is the average number of electrons which crossed a wire cross-section in time T?

3. What is the standard deviation of that number?
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