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Two-dimensional spin structures such as vortices and sky-
rmions1,2 possess a non-trivial topology that affords them a 
degree of stability3–5. These structures are characterized by a 

topological winding number or ‘charge’,
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where m =  m(r, t) is a unit vector representing the orientation of the 
magnetic moments in time and space. Skyrmions (q =  1) and anti-
skyrmions (q =  − 1), for example, possess opposite charges and can 
appear in pairs through the continuous deformation of the uniform 
state (q =  0)6–8. The description of the dynamics of skyrmions and 
antiskyrmions can be approximated by assuming a rigid core, which 
leads to a reduced set of variables describing their motion. These 
dynamics are captured by the Thiele equation9,
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which describes the damped gyrotropic motion of the (anti)sky-
rmion core position, X, in response to a force F. Here G =  − qG0

̂
z is 

the gyrovector, α is a damping constant and D0 is a structure factor 
related to the damping (see Methods). While the dynamics in equa-
tion (2) is non-Newtonian, the gyrotropic response depends on q 
(that is, its topology) and dictates the direction in which the core 
moves. This conceptual framework has been useful to understand 

vortex dynamics10,11, spin-torque vortex oscillators12,13 and the cur-
rent-driven motion of skyrmions6,7,14–18.

In most studies to date, however, the robustness of the symme-
try between opposite topological charges, as expressed in equation 
(2), has not been examined in detail. In particular, the roles of core 
deformation beyond inertial effects19, the internal degrees of free-
dom and the underlying symmetry of the magnetic interactions that 
stabilize the skyrmions remain an open question. This issue is of 
particular importance since nanometre-scale skyrmions are desir-
able for possible device applications20,21 and antiskyrmions have 
been observed in Heusler compounds22 and predicted to occur at 
transition metal interfaces23,24.

In this Article, we show that the symmetries of the magnetic inter-
actions, combined with spin–orbit torques (SOTs), play an important 
role in determining how the (anti)skyrmion core moves. In particu-
lar, the choice of the Dzyaloshinskii–Moriya interaction (DMI) can 
lead to qualitatively different motion for opposite q charges. Namely, 
deviations from rectilinear motion and skyrmion–antiskyrmion pair 
generation can occur above certain SOT thresholds for the skyrmion 
or the antiskyrmion depending on the choice of DMI.

Atomistic spin dynamics simulations
To explore this issue in greater depth, we studied theoretically 
the spin dynamics of skyrmions and antiskyrmions in an ultra-
thin 3d transition metal ferromagnet on a 5d normal metal sub-
strate as shown in Fig. 1a. A prominent example of this material 
combination is PdFe/Ir(111), where a large DMI is induced in the 
Fe monolayer through interfacial coupling to the strong spin–
orbit interaction in the Ir substrate25,26. This allows individual  
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skyrmions to exist as metastable states, which has been brought 
to light in recent experiments27. Moreover, it has been shown that 
a variety of antiskyrmion states (q =  − 1, − 2) are also metastable 
when frustrated exchange interactions are taken into account in 
such ultrathin films28–31 and more generally in bulk chiral mag-
nets32,33, which lead to an attractive interaction between sky-
rmions34. We employed density functional theory calculations 
to obtain estimates of the exchange, anisotropy, and DMI ener-
gies for PdFe/Ir(111), which were then used to parametrize an 
atomistic spin model for studying the dynamics (see Methods). 
Minimizing this energy allows us to determine the equilibrium 
spin configuration of the static skyrmion and antiskyrmion pro-
files, as shown in Fig. 1c,d, respectively. Note that the exchange 
and DMI possess a six-fold symmetry that is consistent with the 
Ir(111) surface (Fig. 1b).

The spin dynamics are computed by time-integrating the 
Landau–Lifshitz–Gilbert equation with additional SOT terms due 
to the applied current,

α β β= −
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where ħ is the reduced Planck constant, Beff =  − δ H/δ m is the effec-
tive field, α is the Gilbert damping constant, βFL is the strength of the 
field-like torque and βDL is the strength of the damping-like torque. 
P =  x̂ is the orientation of the effective spin polarization, which mod-
els an applied electric current along the y direction in the film plane 
(Fig. 1a). While in-plane currents should, in principle, flow through 
both the ferromagnet and normal metal substrate, we assume that 
the majority of the current flows only through the substrate since 
the layer resistivity is significantly larger for the ultrathin ferromag-
net (one or two monolayers thick), given the importance of inter-
facial scattering35 and its relative thickness in comparison to the 
substrate. We can therefore neglect spin transfer torques generated 
within the 3d ferromagnet and assume only field-like and damping-
like contributions from the spin–orbit coupling in the 5d substrate.

Dynamics and skyrmion–antiskyrmion pair generation
An example of the ensuing current-driven motion of a skyrmion 
is shown in Fig. 2a, where the average velocity is plotted as a func-
tion of the SOT for the case of βFL =  βDL. This behaviour is consistent 
with the Thiele equation, which predicts a linear variation of the 
skyrmion velocity as a function of the SOT14 (see Supplementary 
Video 1). In contrast to skyrmions, the average velocity of antisky-
rmions does not increase monotonically with the SOT (Fig. 2a). A 
linear regime is found at low currents up to a first threshold, β1, 
where a discontinuity in the velocity curve can be seen. Above this 
threshold, the velocity continues to increase linearly as a function of 
β but with a different slope. A second threshold β2 is found as the 
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Fig. 1 | Film geometry, symmetry of the DMi and skyrmion profiles.  
a, The bilayer system studied comprising an ultrathin 3d transition 
metal ferromagnet (FM) on a 5d normal metal (NM) substrate, with the 
configuration of the applied magnetic field (B), charge current (Jc) and 
effective spin polarization vector (P). b, The hexagonal lattice structure and 
orientation of the DMI Dij used in the atomistic spin dynamics simulations. 
The dashed arrows represent the effective Dzyaloshinskii–Moriya 
vectors Dm in the continuum (micromagnetic) limit. c, The equilibrium 
skyrmion (q =  1) configuration with the DMI in b. d, The equilibrium 
antiskyrmion (q =  − 1) configuration with the DMI in b. e, The hexagonal 
lattice structure and orientation of the modified DMI vectors used to 
favour the antiskyrmion state. The dashed arrows represent the effective 
Dzyaloshinskii–Moriya vectors Dm in the continuum limit. f, The equilibrium 
skyrmion (q =  1) configuration with the DMI in e. g, The equilibrium 
antiskyrmion (q =  − 1) configuration with the DMI in e.
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Fig. 2 | Motion of antiskyrmions under current-induced SoTs. a, Variation 
of the average velocity 〈 v〉  of skyrmions and antiskyrmions as a function 
of SOT, where βFL =  βDL. Three propagation regimes are identified for 
antiskyrmions: rectilinear motion at low currents; deflected motion at 
intermediate currents; and trochoidal motion at high currents. b, An 
example of antiskyrmion trajectories for linear (ħβFL =  ħβDL =  0.04 meV), 
deflected (ħβFL =  ħβDL =  0.06 meV) and trochoidal motion 
(ħβFL =  ħβDL =  0.09 meV). The arrows indicate the propagation direction.  
c, The βFL− βDL phase diagram for the antiskyrmion dynamics.
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strength of the SOT is increased, where the velocity decreases with 
the applied current. The calculated trajectories for the antiskyrmion 
core are presented in Fig. 2b. For linear motion, we observe that the 
spin configuration of the core is slightly deformed but remains close 
to its equilibrium static configuration (see Supplementary Video 2). 
Above the first threshold β1, the trajectory is linear at long times 
but exhibits a large transient phase in which the motion is curved. 
The rotation ceases when a new steady-state regime is reached, 
which then allows for linear motion to proceed indefinitely (albeit 
with a different Hall angle with respect to the linear case β <  β1;  
see Supplementary Video 3). More interestingly, the core undergoes 
trochoidal motion for β >  β2 that comprises an average displacement 
along a line that is accompanied by oscillations resulting in loops 
along the trajectory (see Supplementary Video 4). The onset of 
these oscillations results in the sharp decrease in the average veloc-
ity shown in Fig. 2a. The phase diagram of the different behaviour 
is shown in Fig. 2c for different values and ratios of βFL and βDL. 
We used algorithms based on machine learning to classify the three 
types of trajectory (linear, deflected and trochoidal), which exhibit a 
wide range of velocities and propagation directions (see Methods). 
We note that the trochoidal motion occurs over a wide range of  
SOT parameters.

The deflected and trochoidal motion are driven by deforma-
tions to the antiskyrmion core. This deformation is characterized 
by the emergence of a dynamical variable ψ(t) that describes the 
helicity of the skyrmion and antiskyrmion (Fig. 3a). For skyrmions,  
ψ describes the continuous transition between Bloch and Néel states 
of opposite chirality, while for antiskyrmions it describes the rota-
tion of the Bloch or Néel axes. In our system, the deformation is 
driven by the SOT, which results in a tilt in the magnetization in 
the film plane, characterized by an amplitude η and the azimuthal 
angle ϕt, that depends on the relative strength between the field-
like and damping-like terms. This tilt is uniform for the background 
spins, while it varies within the antiskyrmion core depending on the 
orientation of ψ. By assuming a suitable ansatz for the deformation 
profile (see Methods, Supplementary Note 1 and Supplementary 
Figs. 1–3), we can derive an equation of motion for ψ(t) using a 
Lagrangian approach,

ψ
σ β η ϕ ϕ

ψ
∂
∂

= ℏ − − ∂
∂ψ ψD

t
Ucos( ) (4)p tDL

where Dψ is a damping structure factor, σψ is an SOT efficiency fac-
tor, ϕp is the azimuthal angle of the spin polarization vector P (ϕp =  0 
in the simulations) and U is the internal magnetic energy. We note 
that a similar expression was found for channelled skyrmion motion 
through edge states18. As the effective SOT force acting on X(t) in 
equation (2) can be written as

σ β ψ ϕ ψ ϕ= ℏ − −qF (sin( ) , cos( )) (5)p p0 DL

the dynamics of ψ determines the time dependence of the force and 
therefore the overall trajectory of the antiskyrmion as shown in Fig. 2b,  
and results from the interplay between the SOT term σψ and the 
restoring force governed by ∂ ψU. The SOT therefore induces a cou-
pling between the translational dynamics of the core with its helic-
ity, a feature that has been seen previously in frustrated magnets31. 
We verified this interpretation by computing the spatially resolved 
forces from the atomistic spin simulations (see Supplementary Note 2  
and Supplementary Figs. 4 and 5). In Fig. 3b,c, we present U(ψ) 
extracted from the spin dynamics simulations for different SOT 
strengths. We find that the potential can be described accurately by 
the function U(ψ) =  u1 cos(ψ −  ψ0) +  u3 cos(3ψ), where u1 ∝  η2 and 
ψ0 ∝  2ϕt for antiskyrmions, which is consistent with predictions from 

the model (see Methods). The u3 term represents a lattice effect that 
accounts for the underlying hexagonal lattice structure36 and is found 
to be largely independent of the SOT. The position of the energy 
minimum is largely independent of the SOT for βFL =  βDL because 
the tilt ϕt remains almost constant for this torque ratio (Fig. 3b).  
However, cases where βFL ≠  βDL lead to different values of ϕt, which 
results in a shift in the minimum (see Supplementary Note 3 and 
Supplementary Fig. 6).

From U(ψ), we can understand the salient features of equation 
(4) as follows. For low amplitudes of the SOT, the restoring force 
due to the lattice term u3 dominates and the steady-state value of ψ 
remains close to its equilibrium value ψ ≃  0, resulting in the simple 
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Fig. 3 | Helicity dynamics in the extended Thiele model. a, Spin 
configurations at the skyrmion (q =  1) and antiskyrmion (q =  − 1) core for 
different values of the helicity parameter, ψ. b, The antiskyrmion energy 
U(ψ) for different values of βFL=  βDL, where the figures denote the SOT 
strength in millielectronvolts. Three regimes are shown: linear (0.04 meV), 
deflected (0.06 meV) and trochoidal (0.09 meV). The open symbols 
represent data extracted from spin dynamics simulations, while the lines 
represent fits to the function U(ψ) =  u1cos(ψ −  ψ0) +  u2cos(3ψ). The arrow 
indicates schematically the SOT force. c, U(ψ) for a skyrmion with the DMI 
constant Dij reduced by a factor of 103, for which the trochoidal regime is 
attained for ħβFL =  ħβDL =  0.1 meV. d, Trajectories for βFL =  βDL using equations 
(2) and (4) with the fits for U(ψ) in b. The insets show ψ(t) extracted from 
simulations (circles) and computed using equation (4) with the fitted U(ψ) 
in b (lines).
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linear motion expected from equation (2) alone. As the strength 
of the SOT is increased, the deformation-induced contribution u1, 
which is also governed by the DMI, increases and leads to a change 
in stability, where a new steady-state value ψ =  ψ0 is reached. This 
results in the deflected motion, which is characterized by large tran-
sients in ψ(t) leading to the stationary value ψ0 at long times. This 
transition between two equilibrium ψ0 states is hysteretic, which 
can be seen by sweeping the current above and below the threshold 
β1 (see Supplementary Fig. 7). As the SOT is further increased, the 
trochoidal regime is attained when the SOT contribution exceeds 
the maximum value of the restoring force ∣∂ ∣ψU , which results in 
a periodic solution in ψ(t). In this light, the transition toward the 
trochoidal regime is analogous to Walker breakdown in domain 
wall motion37, where the magnetization angle at the domain wall 
centre plays the role of ψ here. By using the fits in Fig. 3b, we com-
puted the dynamics of ψ(t) using equation (4) to determine the anti-
skyrmion trajectories in the three regimes (Fig. 3d). We note that 
the predicted dynamics of ψ(t) and X(t) accurately reproduce the 
behaviour obtained from the atomistic spin dynamics simulations 
described by equation (3) (see Supplementary Fig. 8). These results 
also illustrate why such transitions are not seen for the skyrmion 
under similar conditions; Fig. 3c shows that similar variations in 
U(ψ) can be obtained for a skyrmion only if the DMI constant is 
reduced by a factor of 103, which indicates that the equilibrium sky-
rmion state is robust and remains largely unperturbed under SOT 
in this geometry.

Two other regimes beyond the single-particle description are 
also identified in Fig. 2c. First, under large field-like and damp-
ing-like torques, the propagating antiskyrmion is no longer stable 
and becomes annihilated. Second, and more interestingly, a tran-
sition toward another dynamical regime is found under small βFL 
and large βDL, where deflected or trochoidal motion leads to a 
periodic generation of skyrmion–antiskyrmion pairs. An exam-
ple of this process is given in Fig. 4. This regime is strongly non-
linear and represents a complete breakdown of the single-particle 
picture described by equations (2) and (4) (see Supplementary 

Notes 4 and 5, and Supplementary Figs. 9 and 10). The pair is 
generated as follows: as the antiskyrmion undergoes its trochoi-
dal trajectory, it is accompanied by a large deformation that rep-
resents an elongation of the core (that is, at t =  3 ps in Fig. 4a), 
similar to the dynamics seen for gyrating magnetic vortices close 
to the core reversal transition38–40. This elongation, which repre-
sents a skyrmion–antiskyrmion pair with a net charge of q =  0, 
then separates from the core itself (t =  3.5 to 3.8 ps). The corre-
sponding topological charge density qdens for these processes is 
shown in Fig. 4b. Once nucleated, the pair itself separates since 
the SOTs lead to different motion for the skyrmion and anti-
skyrmion constituents. The skyrmion propagates away from the 
nucleation site by undergoing rectilinear motion, while the nucle-
ated antiskyrmion executes trochoidal motion and becomes itself 
a new source of pair generation. This phenomenon leads to the 
generation of a gas of skyrmions and antiskyrmions (Fig. 4c);  
the relative population of the two species varies in time as col-
lisions between skyrmions and antiskyrmions lead to annihila-
tion, while pair generation continues for antiskyrmions that 
survive (see Supplementary Video 5). This process suggests that 
it is possible to generate an indefinite number of skyrmions and 
antiskyrmions from a single antiskyrmion ‘seed’. Combined with 
the attractive interaction between cores made possible by the 
frustrated exchange, this dynamics can eventually lead to a sky-
rmion ‘crystallite’ that condenses from the disordered gas phase 
(see Supplementary Fig. 11). This behaviour is very different to 
skyrmion generation reported previously, where single pairs are 
nucleated from static defects through the coupling between local 
magnetization gradients and spin transfer torques, in systems 
where skyrmions or antiskyrmions are unstable (depending on 
the choice of DMI)7,8.
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and ħβDL =  1.35 meV.
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Fig. 5 | Skyrmion and antiskyrmion dynamics with an anisotropic DMi. 
a, Variation of the velocity of skyrmions and antiskyrmions as a function 
of the torques, where βFL =  βDL, for the DMI shown in Fig. 1e. b, Example 
of skyrmion trajectories for linear (ħβFL =  ħβDL =  0.5 meV), deflected 
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c, βFL− βDL phase diagram for the skyrmion motion.
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Dynamics under different DMi symmetries
Recall that we observed deflected and trochoidal motion only for 
antiskyrmions because the energy barriers U(ψ) in the helicity ψ are 
orders of magnitude larger for skyrmions than for antiskyrmions for 
the same DMI constant (Fig. 3). As such, the asymmetry between 
opposite topological charges is related to the form of the underlying 
DMI, rather than the sign of the charge itself. To test this hypothesis 
we conducted simulations in which an anisotropic form of the DMI 
is used instead, whereby the original six-fold symmetry is retained 
for the exchange interactions while a two-fold symmetry is used for 
the DMI, the DMI strength along the two axes being different as 
shown in Fig. 1e. This mimics the symmetry of the DMI induced at 
a (110) interface23. Since the amplitudes of the magnetic interactions 
are unchanged but only the symmetry is changed, the stability of the 
magnetic textures is only qualitatively affected. Most importantly, 
antiskyrmions are favoured energetically over skyrmions for this 
anisotropic form of the DMI.

Figure 5 summarizes the current-driven dynamics of skyrmions 
and antiskyrmions with the anisotropic DMI in Fig. 1e. In Fig. 5a, 
the current dependence of the velocity is shown for the skyrmion 
and antiskyrmion, whose static profiles are shown in Fig. 1f,g, 
respectively. In contrast to the behaviour shown in Fig. 2, the anti-
skyrmion undergoes only rectilinear motion while the skyrmion 
exhibits deflected and trochoidal motion as the strength of the SOTs 
is increased. We note that the associated thresholds, β1 and β2, are 
also much higher, where velocities beyond 1 km s−1 can be reached in 
the linear regime for both skyrmions and antiskyrmions. In Fig. 5b,  
examples of trajectories for the linear, deflected and trochoidal 
motion for skyrmions are shown. We note that the overall skyrmion 
Hall angles are different from the antiskyrmion case shown in Fig. 2b,  
which originates from different stationary values of ψ for the sky-
rmion. This is a consequence of U(ψ) for the skyrmion with the 
anisotropic DMI, which possesses a different ψ-dependence from the 
case shown in Fig. 3b. This difference is also reflected in the (βFL, βDL)  
phase diagram in Fig. 5c; while the same phases are identified, the 
overall shape of the phase boundaries differs and certain transitions 
are absent, such as the transition between deflected motion and pair 
generation. Nevertheless, the order in which the phases appear with 
increasing SOT is similar.

The importance of the DMI symmetry can be highlighted fur-
ther by examining the current-driven dynamics in the absence of 
DMI altogether. Skyrmions and antiskyrmions remain metastable 
states because of the frustrated exchange interactions, resulting in 
the equilibrium profiles shown in Fig. 6a,b. The absence of a chi-
ral interaction results in Bloch and Néel states being degenerate. 
U(ψ) =  U0 is a constant in equation (4), so the internal mode ψ(t) 
becomes a Goldstone mode of the system that can be excited with 
vanishingly small torques. The Bloch-like skyrmion profile in Fig. 6a  
is therefore only one possible realization of the metastable state. For 
a finite deformation η ≠  0, ψ(t) =  ωt according to equation (4) and 
generates a harmonic SOT force in equation (2), which results in 
circular motion. This has been reported in a previous theoretical 
study of skyrmions and antiskyrmions in frustrated ferromagnets, 
in which the dipole–dipole interaction breaks the degeneracy of the 
different helicity configurations. Therefore, the circular motion can 
be observed only above a certain threshold, but shows also an oppo-
site sense of rotation for opposite topological charges32. This is con-
firmed in the spin dynamics simulations as shown in Fig. 6c, where 
circular motion is indeed found with an opposite sense of rotation 
for opposite topological charges, as expected from the sign of the 
gyrovector G in equation (2). Since the deformation is linear in SOT 
for the range of values considered, we expect a quadratic variation 
in the gyration frequency as a function of SOT from equation (4). 
This is confirmed in Fig. 6d, where the simulated frequencies are 
well described by a quadratic function. A similar analysis predicts 
that the radius of gyration should be inversely proportional to the 
SOT, which is again confirmed by simulations as shown in Fig. 6e. 
Finally, the SOT dependence of the tangential velocity is presented 
in Fig. 6f, where a linear variation is found in agreement with the-
ory. Besides the opposite sense of gyration, these results show that 
the skyrmion and antiskyrmion trajectories agree quantitatively 
within the numerical accuracy of the simulations.

conclusions
These results highlight the rich dynamical behaviour that is pos-
sible under SOTs in ultrathin ferromagnetic films, especially for 
metastable chiral states that are not necessarily the most energeti-
cally favourable. The work also links skyrmion dynamics to other 
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known phenomena in micromagnetism, namely Walker breakdown 
in domain wall motion (trochoidal motion) and vortex core rever-
sal (pair generation). Given the primacy of the DMI symmetry in 
governing the particle dynamics, our work may spur new avenues 
of research in materials science where specific surface or interface 
orientations could be chosen to tailor particular dynamical prop-
erties, such as deflected or trochoidal motion, which is absent in 
most approaches where the focus is on quantifying and controlling 
rectilinear motion for skyrmion memory and logic applications. 
The prospect of generating different dynamics with a variety of 
metastable states within the same material system could also offer 
new possibilities for studying particle interactions and developing 
new application paradigms, notably skyrmion generation with a 
single antiskyrmion ‘seed’. Recent theoretical work shows that such 
seeds are likely to appear at finite temperatures29 and therefore 
offer a reliable and efficient means of producing skyrmions and  
antiskyrmions readily.

Methods
Hamiltonian. The magnetic Hamiltonian studied is given by

∑ ∑ ∑ ∑ μ= − ⋅ − ⋅ × − ⋅ ̂ − ⋅
⟨ ⟩ ⟨ ⟩

H J Km m D m m m z B m( ) ( ) (6)
ij

ij i j
ij

ij i j
i

i
i

i
2

s

where the first term represents the Heisenberg exchange interaction, the second 
term represents the DMI, the third term represents the uniaxial anistropy along 
the z axis and the last term represents the Zeeman energy associated with an 
external field B. The indices ⟨ ⟩ij  in the summation for the exchange and DMI 
terms indicate that single-site terms are neglected. The moments are assumed 
to reside on a hexagonal lattice and ∣ ∣mi  =  1 everywhere. The parameters are 
extracted from density functional theory calculations of the bilayer PdFe system 
on Ir(111)26,28, in which we consider a face-centred cubic stacking for the Pd layer. 
For the Heisenberg exchange, Jij represents the exchange constant between the 
magnetic moments mi and mj, where up to 10 nearest neighbours are taken into 
account: J1 =  14.73 meV, J2 =  − 1.95 meV, J3 =  − 2.88 meV, J4 =  0.32 meV, J5 =  0.69 meV, 
J6 =  0.01 meV, J7 =  0.01 meV, J8 =  0.13 meV, J9 =  − 0.14 meV and J10 =  − 0.28 meV. 
We treat the DMI in the nearest-neighbour approximation as shown in Fig. 1b,e, 
where a magnitude of 1.0 meV for Dij is obtained from density functional theory 
calculations. The anisotropy constant is K =  0.7 meV and we used an applied 
magnetic field of 20 T along the z direction. The magnetic moment of the Fe atoms 
is given by μs =  2.7μB, with μB being the Bohr magneton. For the given parameters, 
the system is in a ferromagnetic ground state close to the transition point to 
the skyrmion lattice phase, where isolated skyrmions and antiskyrmions can be 
stabilized. The applied magnetic field is only slightly larger than the critical field Bc, 
with B =  1.06Bc.

Atomistic spin dynamics simulations. The simulation geometry comprises 
a hexagonal lattice of 100 ×  100 spins with periodic boundary conditions. The 
ferromagnet is assumed to be one monolayer thick. The dynamics of the spin 
system described by equation (6) is solved by numerical time integration of the 
Landau–Lifshitz equation with Gilbert damping and SOTs given in equation (3). 
We used a Gilbert damping constant of α =  0.3 for all of the simulations presented 
here. The numerical time integration is performed using the Heun method. At the 
start of each simulation, an equilibrium skyrmion or antiskyrmion profile is first 
computed by relaxing the system in the absence of the SOT terms. This procedure 
produces the profiles shown in Figs. 1c,d,f,g and 6a,b. The simulations are then 
executed over several nanoseconds with a fixed time step in the range of 0.1–10 fs.

Extension to the Thiele model. The extension to the Thiele model, expressed by 
equation (4), is based on the idea that SOTs lead to a significant deformation of 
the skyrmion/antiskyrmion core. The model is based on two assumptions. First, 
we assume that all spins in the system are canted toward the film plane under 
the combined action of the field-like and damping-like SOT. The deformation 
is assumed to take the form m =  m0 +  ηδ m, where the relaxed ground state is 
m0 =  (sin θ0 cos ϕ0, sin θ0 cos ϕ0, cos θ0) and

θ ϕ ϕ ϕ ϕ ϕ ϕ
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θ ϕ ϕ
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with η representing the amplitude of the deformation and ϕt describing the 
azimuthal component of the background spins that tilt away from the z axis as 
a result of the SOT. Second, in addition to the core position X(t) =  (X(t), Y(t)), 

we elevate the helicity parameter ψ(t) to a dynamical variable, which is defined 
through the azimuthal angle ϕ tr( , )0  =  − ∕ −−q y Y t x X ttan [( ( )) ( ( ))]1  +  ψ t( ), where 
q =  ± 1 is the topological charge. On the basis of this deformation ansatz, we 
derive the equation of motion for ψ(t) using a Lagrangian approach41, which 
involves a continuum approximation for the magnetization, m(r, t), with ∣ ∣m  =  1. 
By neglecting coupling terms proportional to η, we derive the Euler–Lagrange 
equations leading to equations (2) and (4), where the gyrovector term is given by
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and the SOT efficiency factors are
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Here, the equilibrium (anti)skyrmion core profile is assumed to possess a 
cylindrical symmetry, with r being the radial variable in cylindrical coordinates.

Expressions for the helicity-dependent energy, U(ψ), can be found in a similar 
way by using the continuum approximation of equation (6). The dominant 
contribution comes from the DMI. For the symmetry considered in Fig. 1b, we use 
the form42,43
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where D is the DMI constant. For skyrmions, we find
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Here, u0,S is the dominant term, while the deformation-induced contribution u1,S 
provides a correction that increases quadratically with the deformation. Only the 
deformation-induced contribution appears for the antiskyrmion,

ψ η ψ ϕ= −U D u( ) cos( 2 ) (16)tAS
2

1,AS
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As noted in the main text, an additional energy term ∝ cos(3ψ) is required to 
describe the atomistic simulations, which arises from discretization effects due to 
the underlying hexagonal lattice. This lattice term is not present in the continuum 
description.

Classification of skyrmion and antiskyrmion trajectories. The deflected and 
trochoidal motion for antiskyrmions (with the DMI in Fig. 1b) and skyrmions (with 
the DMI in Fig. 1e) can involve a wide range of speeds, propagation directions and 
gyration frequencies. Classifying these behaviours efficiently from simulation data 
to construct the phase diagrams shown in Fig. 2c and 5c is therefore a challenging 
task. We employed algorithms based on machine learning to classify these 
trajectories, which were then used with adaptive meshing to identify the different 
phase boundaries. First, we excluded the annihilation and pair-generation states 
from the simulation data, which could be identified directly from the magnetization 
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state. Second, the velocity orientations within each simulation run for the 
remaining data were mapped onto the unit circle, which then served as inputs for 
classification. The linear motion results in a small cluster of points on the circle, 
the deflected motion gives a partially filled circle, and the trochoidal motion results 
in a fully filled circle. A subset of these images (5–10 per state) were then used as 
learning rules to train the Classify function in the technical computing software 
Mathematica (version 11.2), which was then used to classify the remaining states. 
The target resolutions of the phase boundaries in Fig. 2c and 5c are 0.01 meV 
and 0.02 meV, respectively. A brute force search would therefore require 22,500 
(150 ×  150) simulation runs for each DMI symmetry, while our iterative method 
combined with machine learning required only 1,831 (Fig. 2c) and 2,736 (Fig. 5c) 
runs, respectively. Given that each simulation run takes 5 to 10 h of computation 
time on a single central processing unit core, our method provides a more efficient 
way to explore the parameter space of the dynamical system.

Code availability. The codes used during the current study are available from the 
corresponding author on reasonable request.

Data availability. The data sets generated and/or analysed during the current study 
are available from the corresponding author on reasonable request.
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