

Demagnetization Dynamics and Spin-dependent Lifetimes in Ferromagnets

Hans Christian Schneider

Physics Department University of Kaiserslautern

Condensed-Matter Seminar

Universität Mainz

2014-06-17

Thanks

Theory

Sven Essert Steffen Kaltenborn Svenja Vollmar Dennis Nenno

Prof. Bärbel Rethfeld Benedikt Müller Experiment Prof. Martin Aeschlimann Mirko Cinchetti

Outline

- 1. Introduction & What is ultrafast demagnetization in ferromagnets?
- 2. Elliott-Yafet mechanism for electron-phonon scattering and dynamical Stoner model
- 3. Spin-dependent lifetimes in ferromagnets
- 4. Spin-dependent transport (in normal metals)

How Small & Fast Can Magnetism/Spintronics Get?

Magnetization Dynamics: Scenarios in Fe, Co, Ni

Optically induced magnetization dynamics

Beaurepaire, Merle, Daunois, Bigot, Phys. Rev. Lett. 76, 4250 (1996)

Magneto-Optical Kerr Effect: MOKE

- Magneto-optical effects: dielectric function depends on magnetization ε = ε(M)
- Influences reflected (Kerr effect) and transmitted light (Faraday effect) and
- MOKE: Light polarization angle rotated by $\Theta_F(M)$
- Faraday geometry: Intensity changes = magnetic contrast

Experimental TR-MOKE setup

Ultrafast Demagnetization in Experiment

- Pump-Probe-Measurement of the Magneto-optical Kerr Effect (MOKE)
- Magnetization changes on ultrafast timescales ("quenching")
- No coherent artifacts
- MOKE measures magnetization on ultrashort timescales

Beaurepaire, Merle, Daunois, Bigot, Phys. Rev. Lett. **76**, 4250 (1996) these data: M. Krauß et al., Phys. Rev. B **80**, 180407(R) (2009)

Hans Christian Schneider, TU Kaiserslautern

Ultrafast Demagnetization in Experiment

X-ray magnetic circular dichroism (XMCD)

Magnetization Dynamics on Different Time Scales

Experimental TR-MOKE result on different time scales

Djordjevic et al., phys. stat. sol. (c) 3, 1347 (2006)

Time Scales of Magnetization Dynamics

- Coherent regime (~10 fs)
- Incoherent "thermalization" dynamics of nonequilibrium electrons (100 fs)
- Quasi-thermal regime: electron temperature, lattice temperature (1 ps)
- Spin-lattice equilibration (100 ps)
- Ultrafast magnetization (spin) dynamics surprising!

- 1. Introduction & What is ultrafast demagnetization in ferromagnets?
- 2. Elliott-Yafet mechanism for electron-phonon scattering and dynamical Stoner model
- 3. Spin-dependent lifetimes in ferromagnets
- 4. Spin-dependent transport (in normal metals)

Relevant Facts

Ultrashort Magnetization Dynamics (Theory)

<u>Question(s)</u> Microscopic mechanism behind the magnetization quenching on ultrashort timescales?

This talk

- 1. Role of coherent effects in the presence of the pulse
- 2. Role of band-structure details
- 3. Role of non-equilibrium electrons
- 4. Role of "true" (correlated) magnetization dynamics
- 5. Role of spin-dependent transport processes
- Answer Probably: "All of the above"
- Agreement Spin-orbit interaction has something to do with it
- <u>Problem</u> Usually "agreement with experiment" for 1-5; BUT dependence on parameters

(Phenomenological) Three-Temperature Model

 Three systems (electrons, lattice, and spins) in quasi-equilibrium: assign temperatures

from: Kirilyuk et al., Rev. Mod. Phys. **82**, 2731 (2010)

 Separation and quasi-equilibrium assumption OK for picosecond time scale. But:

How to describe ultrafast dynamics in the correlated electron system of the ferromagnet <u>microscopically</u>?

Other Approaches

 α

- Coherent effects: Important for (few) localized levels with strong spin-orbit coupling
- Landau-Lifshitz-Bloch equations: assume electronic temperature; effective spin-orbit coupling includes spin-fluctuations (around T_c)

Zhang and Hübner, Phys. Rev. Lett. **85**, 3025 (2000) Bigot, Vomir, Beaurepaire, Nature Phys. **5**, 515 - 520 (2009)

Chubykalo-Fesenko et al, Phys. Rev. B **74**, 094436 (2006) Atxitia, Chubykalo-Fesenko, Walowski, Mann and Münzenberg Phys. Rev. B **81**, 174401 (2010)

 Superdiffusive transport: electrons with different spin leave spot with different velocities
 Battiato, Carva, and Oppeneer, PRL 105, 027203 (2010)

Hans Christian Schneider, TU Kaiserslautern

Spin Mixing in Transition Metals

5

Energy [eV]

-10

W

- Spin mixing important for optical excitation and scattering
- Spin mixing anisotropic ("spin hot-spots")?

Fabian & Das Sarma, Phys. Rev. Lett. 81, 5624 (1998)

- Keep band structure fixed!
- Goal: Obtain quantitative results!

Nickel band structure with "spin hot-spots" 0,8 0,6 0,4 0 0,2 0 -0,2 -0,4 -0,6 -5 -0,8 -1

Х

W

ĸ

Elliott-Yafet Mechanism: Spin Relaxation due to Electron-Phonon Scattering

Spin mixing + electron-phonon scattering = spin relaxation

Phonons do <u>not</u> carry angular momentum (spin-diagonal interaction)

Yafet, Solid State Physics, **14** (1963)

Koopmans et al., Nature Mat. **9**, 256 (2010)

k-resolved Electron Scattering Dynamics

Equation of motion for electronic dynamics

$$\frac{d}{dt}f^{\mu}(\vec{k}) = \left. \frac{d}{dt}f^{\mu}(\vec{k}) \right|_{e-ph} + \left. \frac{d}{dt}f^{\mu}(\vec{k}) \right|_{opt}$$

carrier distribution in band μ with momentum k

Optical excitation of carriers

$$\frac{d}{dt}f^{\mu}(\vec{k})\Big|_{opt} = \frac{2\pi}{\hbar} \sum_{\nu \neq \mu} \left| \vec{d}_{\mu\nu} \cdot \vec{E} \right|^2 \left(f^{\nu}(\vec{k}) - f^{\mu}(\vec{k}) \right) g\left(\left| \epsilon^{\nu}(\vec{k}) - \epsilon^{\mu}(\vec{k}) \right| - \hbar\omega \right)$$

k-Resolved Electron-Phonon Scattering

Electron-phonon Boltzmann scattering integrals

ab-initio input

$$\begin{aligned} \frac{d}{dt}f^{\mu}(\vec{k}) &= \sum_{\lambda} \sum_{\vec{q}} \left[w^{\lambda}_{\vec{k}+\vec{q},\mu'\to\vec{k},\mu} f^{\mu'}(\vec{k}+\vec{q}) \left(1-f^{\mu}(\vec{k})\right) - w^{\lambda}_{\vec{k},\mu\to\vec{k}+\vec{q},\mu'} f^{\mu}(\vec{k}) \left(1-f^{\mu'}(\vec{k}+\vec{q})\right) \right] \\ w^{\lambda}_{\vec{k},\mu\to\vec{k}+\vec{q},\mu'} &= \left. \frac{2\pi}{\hbar} \right| \xrightarrow{q} \left[\tilde{n}^{\vec{q}}_{q} \delta \left(\epsilon^{\mu'}(\vec{k}+\vec{q}) - \epsilon^{\mu}(\vec{k}) - \hbar \omega^{\lambda}_{\vec{q}} \right) \right. \\ &\left. + \left(\tilde{n}^{\lambda}_{-\vec{q}} + 1 \right) \delta \left(\epsilon^{\mu'}(\vec{k}+\vec{q}) - \epsilon^{\mu}(\vec{k}) + \hbar \omega^{\lambda}_{-\vec{q}} \right) \right] \end{aligned}$$

$$\textbf{Two contributions to spin-flip matrix element}$$

 $\xrightarrow{\mathbf{q}} \propto \sum_{\vec{R}} e^{i\vec{q}\cdot\vec{R}} \left\langle \psi_f \left| \vec{\epsilon}_{\vec{q}} \cdot \nabla_{\vec{R}} \left(V + \frac{\hbar}{4m^2c^2} \left(\nabla_{\vec{r}} V \times \vec{p} \right) \cdot \vec{\sigma} \right) \right| \psi_i \right\rangle$

S. Essert & H. C. Schneider, Phys. Rev. B **84**, 224405 (2011)

• Band structure @ T = 0K: $\epsilon^{\mu}(\vec{k})$ • Transition dipole matrix elements $\vec{d}_{\mu\nu}$ • Phonon dispersion $\omega_{\vec{q}}^{\lambda}$ • Electron-phonon matrix elements $M_{\vec{k},\mu;\vec{k}',\mu'}^{\lambda}$

Optical Excitation: Dipole Transitions in Nickel

Dipole transitions with photon energy 1.55 eV in different regions of the Brillouing zone

Optical Excitation (2)

▶ Optical excitation using ultrashort pulse (1.55 eV, 50fs, 4 mJ/cm⁻²)

Demagnetization is not caused by spin mixing during optical excitation

S. Essert & H. C. Schneider, Phys. Rev. B **84**, 224405 (2011)

Optical Excitation in Nickel

- Energy resolved change in carrier occupation
- Optical excitation using ultrashort pulse (1.55 eV, 50fs, 4 mJ/cm⁻²)
- Mainly minority electrons (and holes!) excited

Optical Excitation: Frequency Dependence

Influence of band structure/spin-mixing on optical excitation

Magnetization Dynamics after Optical Excitation

- Demagnetization mainly due to hole scattering
- Optical excitation and electron-phonon-scattering cannot explain the observed demagnetization
- Other scattering mechanisms?

Hans Christian Schneider, TU Kaiserslautern

Hans Christian Schneider, TU Kaiserslautern

Hans Christian Schneider, TU Kaiserslautern

Hans Christian Schneider, TU Kaiserslautern

Band Structure Properties

Demagnetization requires energy (delivered by pulse)

Any scattering process = dynamical redistribution of excited carriers

How Accurate Can Scattering in a Fixed Band Structure Be?

 Minimal magnetization (maximal demagnetization) by "optimization" for the energy deposited by laser pulse in a fixed band structure

$$\min_{\{n_{\vec{k}}^{\mu}:0\leq n_{\vec{k}}^{\mu}\leq 1\}}\sum_{\vec{k}}\sum_{\mu}n_{\vec{k}}^{\mu}\langle S_{z}\rangle_{\vec{k}}^{\mu}$$

Constraints

$$\sum_{\vec{k}} \sum_{\mu} n_{\vec{k}}^{\mu} = N_{\text{eq}}$$
$$\sum_{\vec{k}} \sum_{\mu} n_{\vec{k}}^{\mu} \epsilon_{\vec{k}}^{\mu} \le E_{\text{eq}} + \Delta E$$

• Deposited energy
$$\Delta E = \int_{300 \text{ K}}^{T(5 \text{ ps})} dT C_{\text{p}}(T)$$

Essert & Schneider, Phys. Rev. B **84**, 224405 (2011)

energy (eV)

How Accurate Can Scattering in a Fixed Band Structure Be?

 Minimal magnetization (maximal demagnetization) by "optimization" for the energy deposited by laser pulse in a <u>fixed band structure</u>

Distribution Functions

after optical excitation minimal magnetization 1,0 1,0 majority-spin majority-spin minority-spin minority-spin equilibrium distribution 0,8 0,8 equilibrium distribution occupation function (Fermi-Dirac-distribution) occupation function (Fermi-Dirac-distribution) 0,6-0,6 0,4 0,4 0,2 0,2 0,0 0,0 -2 -2 0 2 -1 0 2 -1 energy [eV] energy [eV] unlikely to be reached by physical scattering processes agreement with Scattering in DFT band structure in general <u>not</u> sufficient to Carva, Battiato and explain demagnetization Oppeneer, PRL 107 207201 (2011) Exchange splitting change/spin fluctuations must occur on ultrafast timescale in addition to scattering

Rhie et al., Phys. Rev. Lett. **90**, 247201 (2003)

Effective Stoner Model (1)

- Model based on nickel spindependent density of states
- Effective two-band model: Distribution functions $f_{\downarrow}(E)$ and $f_{\uparrow}(E)$ spin and energy dependent
- Stoner model with effective Coulomb energy U=5.04 eV
- Exchange splitting

 $\Delta = U_{\rm eff} M = 0.26 \,\rm eV$

Density of states

$$\mathcal{D}_{\sigma}(E) = \mathcal{D}_{\sigma}^{(0)}(E \pm \Delta)$$

Effective Stoner Model (2)

- "Realistic" equilibrium magnetization curve
 - $T_{C} = 631 \text{K}$
- Dynamics: Influence of "hot electrons"? ⇒ Include carrier-

carrier and carrier-phonon scattering

 "Non-equilibrium generalization of 3temperature model"

Dynamical Stoner Model

- Boltzmann scattering integrals for carrier-carrier (static Coulomb), carrier-phonon (LA) interaction
- Optical excitation (plasma like)
- Dynamical energy dispersions

scattering integrals: M. Krauß et al, Phys. Rev. B **80**, 180407(R) (2009); dynamical exchange splitting: B. Mueller et al., PRL 111, 167204 (2013)

Stoner-Model Demagnetization Dynamics

- Dynamic exchange splitting "improves" quenching
- Temperature and chemical potential differences contribute to demagnetization dynamics
- Exchange splitting dynamics removes problem with spinflip scattering across a static gap

Dynamical Exchange Splitting

- Electrons heated up by optical exciation $\mu_{\uparrow} \neq \mu_{\downarrow}$
- Scattering equilibrates chemical potentials $\mu_{\uparrow}, \mu_{\downarrow} \rightarrow \mu$
- Dynamical exchange splitting shifts bands: changes quasiequilibrium chemical potential µ

- 1. Introduction & What is ultrafast demagnetization in ferromagnets?
- 2. Elliott-Yafet mechanism for electron-phonon scattering and dynamical Stoner model
- 3. Spin-dependent lifetimes in ferromagnets
- 4. Spin-dependent transport (in normal metals)

Ferromagnet Lifetimes + "History"

- So far: measurement and calculation of demagnetisation dynamics fraught with inaccuracies
- Simpler(?) problem: Measure/calculate lifetimes
- Theory developed for electron gas in the 1950s and 1960 by Ritchie, Quinn & Ferrell, Ritchie, Quinn (see, e.g., Mahan: Many-particle physics)
- Surface states by Echenique, Chulkov and coworkers
- DFT + Many-Particle Theory community (Ambrosch-Draxl, Godby, Louie, Chulkov & Echenique)

Lifetimes: Theory

Evaluate dielectric function

$$\varepsilon(\vec{q},\omega) = 1 - V_q \sum_{\mu\nu\vec{k}} |B_{\vec{k}\vec{q}}^{\mu\nu}|^2 \frac{f_{\vec{k}}^{\nu} - f_{\vec{k}+\vec{q}}^{\mu}}{\hbar\omega + \epsilon_{\vec{k}}^{\nu} - \epsilon_{\vec{k}+\vec{q}}^{\mu} + i\hbar\gamma}$$

• with wave function overlap $B_{\vec{k}\vec{q}}^{\mu\nu} = \langle \psi_{\vec{k}+\vec{q}}^{\mu} | e^{i\vec{q}\cdot\vec{r}} | \psi_{\vec{k}}^{\nu} \rangle$

• spin-mixing (spin-orbit) coupling included $|\psi_{\vec{k}}^{\mu}\rangle = a_{\vec{k}}^{\mu}|\uparrow\rangle + b_{\vec{k}}^{\mu}|\downarrow\rangle$

• Coulomb pot.
$$V_q = \frac{e^2}{\varepsilon_0 q^2}$$

Use q-dependent tetrahedron method (implemented by S. Kaltenborn)

- DFT code including spin-orbit coupling: ELK
- No local-field effects

Lifetimes: Theory

- Lifetimes from Fermi's Golden Rule, i.e., G₀W₀ approximation for self-energy
- momentum and band dependent rate: $(v, \vec{k}) \rightarrow (\mu, \vec{k} + \vec{q})$

$$\gamma_{\vec{k}}^{\nu} = \frac{2}{\hbar} \sum_{\mu \vec{q}} \frac{\Delta q^3}{(2\pi)^3} V_q \left[B_{\vec{k}\vec{q}}^{\mu\nu} \right]^2 f_{\vec{k}+\vec{q}}^{\mu} \frac{\operatorname{Im} \varepsilon(\vec{q}, \Delta E)}{|\varepsilon(\vec{q}, \Delta E)|^2}$$

- energy difference $\Delta E = \epsilon^{\mu}_{\vec{k}+\vec{q}} \epsilon^{\nu}_{\vec{k}}$
- again, spin-orbit coupling included $|\psi_{\vec{k}}^{\mu}\rangle = a_{\vec{k}}^{\mu}|\uparrow\rangle + b_{\vec{k}}^{\mu}|\downarrow\rangle$

Spin-dependent Lifetimes in Ferromagnets

- Success explaining spinintegrated lifetimes
- Problems with spin dependence
- Reason: Singlet vs. triplet scattering??
- Discrepancy with calculations; see also Goris et al., Phys. Rev. Lett. 107, 026601 (2011)

Knorren, Bennemann, Burgermeister, Aeschlimann, Phys. Rev. B 61, 9427 (2000)

Spin-dependent Lifetimes in Ferromagnets

- GW calculations predict essentially results from random-k model (DOS!)
- T-matrix yields only small differences

Zhukov, Chulkov, Echenique, Phys. Rev. Lett. 93, 096401 (2004); Phys. Rev. B 73, 125105 (2006)

Iron vs. Nickel: DOS/random-k

- Very different DOS at Fermi energy for Fe and Ni
- High spin polarisation at Fermi energy: very different scattering phase space in the different spin channels
- Random-k model: spin-dependent DOS determines lifetimes

Cobalt DOS

 Pronounced spin polarisation at Fermi energy

Lifetimes in Iron

- Compute k- and band resolved lifetimes
- Average lifetimes in energy "bins"
- Use scatter in k as "error bar"
- Small error bar: Only few bands intersect Fermi energy
- Good agreement for "spin asymmetry"
- Results essentially in agreement with earlier abinitio calculations
- "Spin-integrated" lifetimes also in agreement with experiment*

Knorren, Bennemann, Burgermeister, Aeschlimann, Phys. Rev. B 61, 9427 (2000)

Kaltenborn and Schneider, arXiv1403.4728(2014)

Spin-dependent Lifetimes in Cobalt

- Pronounced scatter
- Good agreement with experiment for "spin asymmetry"
- "Spin-integrated" lifetimes also in agreement with experiment*
- Spin-orbit coupling "flips spins"; DOS argument for separate spin channels does not apply

Kaltenborn and Schneider, arXiv1403.4728(2014)

Goris et al., Phys. Rev. Lett. 107, 026601 (2011)

Lifetimes in Nickel

- Small "error bar" (scatter in k)
- Good agreement with measurements
- Very different result from earlier calculations without spin-orbit coupling
- Spin-orbit coupling "flips spins"; DOS argument for separate spin channels does not apply

Knorren, Bennemann, Burgermeister, Aeschlimann, Phys. Rev. B 61, 9427 (2000)

Kaltenborn and Schneider, arXiv1403.4728(2014)

Electronic Lifetime in Aluminum

- Benchmark results for aluminium calculated with Wien97, LMTO codes without spin-orbit coupling in wave functions
- Surprisingly large effect due to inclusion of spin-orbit coupling in wave functions
 Kaltenborn and Schneider, arXiv1403.4728(2014)

Heusler Alloys: Half-Metallic Ferromagnets

Spin polarization:
$$P(E) = \frac{N(E_{\uparrow}) - N(E_{\downarrow})}{N(E_{\uparrow}) + N(E_{\downarrow})}$$

Heusler Compounds

Compare CoMnSi and CoFeSi

 Gap below and above Fermi energy for minority electrons Band structure calculation checked against: B. Balke et al., Phys. Rev. B 74, 104405 (2006)

Heuslers: Spin-dependent Lifetimes

- Small spin-asymmetry (minority/majority) over wide energy range
- Gap in minority DOS not visible
- Only around special energies a ratio of 4 or 5 to 1 is reached

Kaltenborn and Schneider, Phys. Rev. B 89, 115127 (2014).

Conclusions

- Ab-initio based calculation of optical excitation and "classical" Elliott-Yafet carrier-spin dynamics in ferromagnetic metals
- DFT (T = 0K) band structure and electron-phonon coupling matrix elements
- "Simple" model including dynamics of exchange splitting (magnetic order parameter) improves achievable magnetization quenching at realistic fluences
- Calculation of spin asymmetry including spin-orbit coupling in the wave functions for ferromagnets and Heusler compounds
- Spin-orbit coupling washes out differences in the scattering phase space in the spin-dependent DOS