Towards the ultimate limits of spintronics: ultrafast optical control of magnetism

D. Bossini

JSPS "Overseas Researcher" Fellow at University of Tokyo, Japan

Davide Bossini

Scientific goal

Ultrafast manipulation of the magnetic order

Davide Bossini

Scientific goal

Femto + Nano + Spin

E. Beaurepaire et al. PRL 76, 4250 (1996)

C. Stanciu et al. Phys. Rev. Lett. 99, 047601 (2007)
I. Radu et al. Nature 472, 205 (2011)
J.H. Mentink et al. Phys. Rev. Lett. 108, 057202 (2012)
T. Ostler et al. Nat. Comm. 3, 666 (2012)

Davide Bossini

Scientific goal

Femto + Nano + Spin

≤ 100 fs

Spins

Mm

Davide Bossini

Dielectric antiferromagnet

No free electrons
 Majority of magnetically ordered materials
 No stray field, technological potential
 Intrinsically faster spin dynamics

$$\hat{H} = J \sum_{\langle i,j \rangle} \hat{S}_i \cdot \hat{S}_j$$

Davide Bossini

Collinear magnetic sublattices

Dispersion in AF

 $\hat{H} = J \sum \hat{S}_i^{\uparrow} \cdot \hat{S}_j^{\downarrow} + g\mu_B H_A \left[\sum \hat{S}_i^{z\uparrow} \right]$ $\langle i,j \rangle$

Davide Bossini

$$egin{aligned} &\omega_{m{q}} = \sqrt{(\omega_E + \omega_A)^2 - (\omega_E \gamma_{m{q}})^2} \ &\omega_E \equiv JSz \ &\omega_A \equiv g \mu_B H_A \ &\gamma_{m{q}} = rac{1}{z} \sum_{m{\delta}} \mathrm{e}^{\mathrm{i}m{q}\cdotm{\delta}} \end{aligned}$$

Opto-magnetism

A. Kimel et al. Nature 435, 655 (2005)

Excitation of coherent spin waves Magneto-optical probe: Faraday rotation Pump wavelength: 800 nm

Pump beam $\approx 10^{14}$ Hz Spin wave $\approx 10^{11}$ Hz Resonant magnetic dipole coupling?

Davide Bossini

Impulsive Stimulated Raman Scattering (ISRS)

Coherent process

Davide Bossini

J. Gutenberg University, Mainz 21th November 2016

Spin-flip driven by the

L-S coupling in the

excited state

P. Fleury et al. Phys. Rev. 2, 514 (1968)

Raman on magnons

Light-spin interaction

$$\hat{\mathcal{H}} = \sum_{\lambda,\nu} \epsilon^{\lambda\nu} (\hat{\boldsymbol{S}}) E^{\lambda} E^{\nu}$$

$$\hat{S}_{i}^{x,y}$$
 spin deviations

M. Cottam and D. Lockwood, Light Scattering in Magnetic Solids (Wiley-Interscience, 1986)

$$\begin{split} \epsilon^{\lambda\nu} &= \sum_{i} \sum_{\gamma} K^{\lambda\nu\gamma} \langle \hat{S}_{i}^{\gamma} \rangle + \sum_{i} \sum_{\gamma\delta} G^{\lambda\nu\gamma\delta} \langle \hat{S}_{i}^{\gamma} \rangle \langle \hat{S}_{i}^{\delta} \rangle + \sum_{i,j} \sum_{\gamma\delta} \rho^{\lambda\nu\gamma\delta} \langle \hat{S}_{i}^{\gamma \dagger} \hat{S}_{j}^{\delta \downarrow} \rangle \\ \Delta S &= 1 & \langle \hat{S}_{i}^{z} \rangle \langle \hat{S}_{i}^{x,y} \rangle & \langle \hat{S}_{i}^{x,y,z} \rangle \langle \hat{S}_{j}^{x,y,z} \rangle \\ \text{Faraday effect} & \text{LINEAR in the} \\ \text{spin deviations} & \text{QUADRATIC in the} \\ \text{spin deviations} & \Delta S = 1 & \Delta S = 0 \\ \text{Magnetic Linear Birefringence} & \text{J. Ferrè et al. Rep. Prg. Phys 47, 513 (1984)} \end{split}$$

Davide Bossini

General concept

T. Satoh et al. Phys. Rev. Lett. 105, 077402 (2010)

T. Satoh et al. Nat. Phot. 6, 662 (2012)

T. Satoh et al. Nat. Phot. 9, 25 (2014)

J. Li et al. Opt. Exp. 19, 22550 (2011)

- N. Kanda et al. Nat. Comm. 2, 362 (2011)
- A. Kirilyuk et al Rev. Mod .Phys. 82, 2731, (2010)

S. Parchenko et al APL 108, 032404, (2016)

Absorption of the pump beam: heating!

Different magnetic structures: ferrimagnet, canted AF, collinear AF

Davide Bossini

Opto-magnetism without absorption ? Sample: KNiF₃

Cubic Heisenberg AF $(T_N = 246 \text{ K})$

J. Gutenberg University, Mainz 21th November 2016

Davide Bossini

Experimental scheme Spectral dependence of the ultrafast opto-magnetic effect

s $L \equiv S^{\uparrow} - S^{\Downarrow}$ Antiferromagnetic vector

Z

Tunability range: (0.48 - 6.5) eV
 Quantity probed: ellipticity

Davide Bossini

Magnetic linear birefringence (MLB)

Quadratic MO effect: $\propto L_z L_y + L_z^2$ J. Ferre and G. Gehring, Rep. Prog. Phys. 47, 513 (1984)

Dynamics: $\Delta M \propto \gamma L imes rac{\partial L}{\partial t}$ A.F Andreev et al Sov. Phys. Usp. 23, 21 (1980)

 $\Delta MLB \propto L_z \Delta L_y + L_z \Delta L_z$

Simultaneous measurement of transversal and longitudinal spin dynamics

Davide Bossini

Laser-induced dynamics

Davide Bossini

Spectral dependence

Davide Bossini

✓ Dissipative regime: picture confirmed
 ✓ Non-dissipative regime: amplitude
 of the oscillations unaffected
 ✓ Non-zero incoherent signal

T_M increases only via magnetic interactions

Zero Absorption Criterion:

 $\tau_d = \tau_r$

Davide Bossini

Magnon dispersion in AF

 Femtosecond period
 Nanometer
 wavelength
 Defined by E_{ex}

Measure the macrospin dynamics triggered by femto-nanomagnons

Davide Bossini

Generation

Problem: high-wavevector magnons are usually unaccessible

Davide Bossini

Two options

G. Batignagni, D.Bossini et al Nat. Phot. 9, 506 (2015)

Time-resolved stimulated Raman spectroscopy

Davide Bossini

Detection

Pump-probe technique

Magneto-optical response to the photo-excitation measured as a function of the delay

All-optical detection via a second-order magneto-optical effect

$$\epsilon_s^{\lambda\nu} = \sum_{ij} \sum_{\gamma\delta} \rho^{\lambda\nu\gamma\delta} \langle \hat{S}_i^{\gamma\uparrow} \hat{S}_j^{\delta\Downarrow} \rangle$$

J. Ferrè et al. Rep. Prg. Phys 47, 513 (1984)

Davide Bossini

Laser-induced dynamics

Davide Bossini

Pump and probe linearly and orthogonally polarized

Oscillations @ 22THz (T=45 fs)

 \checkmark Lifetime \approx 500 fs

Temperature dependence

Davide Bossini

Davide Bossini

Macrospin dynamics

Same timedependence

Macroscopic probe of the femtosecond dynamics of nanometer spin correlations

Davide Bossini

Control the dynamics

What's next

Dynamics induced by femto-nanomagnons

$$\hat{H}_1(t) = \delta(t) \frac{4\pi I_1}{n_R c} \sum_{\langle i,j \rangle} \Xi_{ij}$$

$$\begin{pmatrix}
\hat{S}_{i}^{+\uparrow} \hat{S}_{j}^{-\Downarrow} + \hat{S}_{i}^{-\uparrow} \hat{S}_{j}^{+\Downarrow} \\
\hat{Z}
\end{pmatrix} + A \hat{S}_{i}^{z\uparrow} \hat{S}_{j}^{z\Downarrow} + A \hat{S}_{i}^{z\uparrow} \hat{S}_{j}^{z\Downarrow}$$
Supportion in X-V plane

Symmetric in x-y plane

Precession forbidden: dynamics purely longitudinal

No classical equation of motions!

Davide Bossini

What's next

 CritePiarefquantputation battine batteet(KibliElasSideNiF4) counterpart !!
 "Artificias use of it batastic approximation" (generalized potential)

Dr. J. Mentink

Radboud University Nijmegen, Nijmegen, The Netherlands

Dr. H. Gomonay

Johannes Gutenberg Universität Mainz Institute of Physics SPICE/INSPIRE

D. Bossini et al. in preparation

Conclusions

 Control of the photo-induced energy flow: zero absorption regime
 Macroscopic probe of the femtosecond dynamics of *E_{ex}* Coherent femtosecond manipulation of the

magnetic order on the nanometer scale

Fento-nanomagnonics
D. Bossini et al. Nat. Comm. 7, 10645 (2016)
D. Bossini et al. ACS Photonics 3, 1385 (2016) (Invited Review)

Davide Bossini

Acknowledgements

S. Dal Conte, G. Cerullo

IFN-CNR Dipartimento di Fisica, Politecnico di Milano, Milano, Italy

R. V. Pisarev Ioffe Physical-Technical Institute, Russian Academy of Sciences, St. Petersburg, Russia

A. Secchi, Y. Hashimoto, Th. Rasing, A.V. Kimel

Radboud University Nijmegen, Institute for Molecules and Materials, Nijmegen, The Netherlands

Davide Bossini

