

Spin-Orbit Twisted Spin Waves in 2 Dimensional Electron Liquids

Florent Perez

Institut des NanoSciences de Paris, Université Pierre et Marie Curie, CNRS-UMR7588

October 25th, 2016

Theory C. A. Ullrich, G. Vignale University of Missouri, USA

I. D'Amico University of York, UK

Spintronic thematics evolution

Spintronics started in the mid 90's, with Giant magneto resistance (2007 Nobel Prize)

SCOPE

- Spin-wave control by spin-orbit interaction: important facts
- Twisted spin waves (our work)
- Comparison with chiral spin waves in conducting ferromagnet
- Perspectives

(1) SPIN-ORBIT in the CONDUCTION BAND of a 2D Galilean invariant

$$\mathbf{B}_{\mathrm{SO}} = -\frac{1}{c^2}\mathbf{v} \times \boldsymbol{\mathcal{E}}$$

$$\hat{H}_{SO} = \mathbf{B}_{SO}(\mathbf{k}) \cdot \frac{\widehat{\sigma}}{2}$$

Structural Inversion Asymetry

Rashba term $k_{y} \parallel [010]$ $\mathbf{B}_{SO}(\mathbf{k}) = 2 \alpha \begin{pmatrix} k_{y} \\ -k_{x} \end{pmatrix}$ $k_{x} \parallel [100]$

(2) SPIN-ORBIT TORQUE in CONDUCTION BAND : Inverse Spin-Galvanic

(3) SPIN-ORBIT TORQUE in CB : 2 SPIN SYSTEMS

A. Manchon et al., Phys. Rev. B 2009

(4) SPIN-ORBITRONIC : HYBRID STRUCTURES : Rashba/FM

Magnetization switching

Spin wave transistor

Kajiwara et al., Nat. Lett. 2010

I. Miron et al., Nat. Letter 2011

(5) STATE OF The ART for Controlling SW with SO

Natural Route :

Hybrid heterostructure with Structural Asymetry => Rashba type SO Ferromagnet Insulator (Magnons, localized spins, no SO, long lived) Adjacent conducting material with strong SO Less natural Route : Itinerant magnet (Spin Waves of conducting spins, short lived) **Conduction with SO** (Spin-orbit and Spin-Spin interactions are supported by the same medium) ╋ Interplay of SO and Coulomb-exchange?

SCOPE

- Spin-wave control by spin-orbit interaction
- Twisted spin waves (our work)

 Model system : SP2DEG, Spin waves by Raman
 - First and 2nd interpretations
 - Final : Twisted Spin Waves
 - Group velocity control
- Comparison with chiral spin waves in conducting ferromagnet

Spin-Orbit and Spin Waves from first principles in a model system

Model system : Spin-polarized two-dimensional electron gas

Theory : C. Ullrich et al., PRB 2002 & 2003 ; I. d'Amico

Model system : CdMnTe doped quantum well Mn (x<1%) Iodine ($n_{2D} \simeq 1.5-4 \times 10^{11} \text{ cm}^{-2}$) E dMgTe IMgTe $Cd_{1-r}Mn_rTe$ **Two interacting spin sub-systems :** e⁻1/2-spin system Mn 5/2-spin system

 $\hat{H}_{s-d} = -\alpha \sum_{i,j} \chi^2 (y_j) \mathbf{\hat{s}}_i \cdot \mathbf{\hat{l}}_j \longleftarrow$ $= \Delta \times \hat{S}_{z,q=0} + K \times \hat{M}_{z,q=0} + \hat{H}_{Corr}$

Model system : CdMnTe doped quantum well

 $d_{Mn-Mn} \ll \lambda_F \Leftrightarrow K \ll \Delta$

Model system : CdMnTe doped quantum well

SP2DEG

B. Jusserand, F. Perez et al. Phys. Rev. Lett. (2003) F. Perez, et al. Phys. Rev. Lett. (2007)

No Landau quantization

- Spin quantization dominates over orbital quantization (opp. GaAs)
- Mobilities are up to 10⁵ cm²/Vs
- High spin polarization degree (up to 100%)

14

Spin wave dispersion : *q*>0

B

Spin wave dispersion : *q*>0

Spin wave damping

Universal linearity Damping vs Frequency :

$$\eta = \tilde{\eta}_0 + \frac{2m^*}{\hbar} \frac{\eta_2}{S_{\rm sw}} \omega \Big|_{18}$$

Theory : E. Hankiewicz et al. PRB (R) (2008) Experiment : J. Gomez et al. PRB (R) (2010)

Reminder : SPIN-ORBIT in the CONDUCTION BAND of a QW

Reminder : spin-orbit fields in quantum wells

Spin-Orbit and Spin Waves from first principles : Twisted Spin Waves

Previous steps :

F. Baboux, F. Perez *et al.*, Phys. Rev. Lett. **109**, 166401 (2012);
F. Baboux, F. Perez *et al.*, PRB Rapid Comm. **87**, 121303 (2013)
Theory : C. Ullrich et al., PRB 2002 & 2003; I. d'Amico

(1) EXPERIMENTAL FACTS

[010]

 $\mathbf{B}_{\mathrm{ext}}$

2nd order

(3) THEORY (F. Perez, C. Ullrich, G. Vignale, I d'Amico):

Rotated frame :

$$\hat{H}_{SO} = -\hbar \mathbf{q}_0 \cdot \mathbf{\hat{J}}_{\mathbf{q}=\mathbf{0}}^Z + \hbar \mathbf{q}_1 \cdot \mathbf{\hat{J}}_{\mathbf{q}=\mathbf{0}}^X$$

First order

$$\mathbf{q}_{0/1} = \frac{2m^*}{\hbar^2} [(\alpha + / -\beta \sin 2\varphi) \mathbf{e}_{x/z} + \beta \cos 2\varphi \mathbf{e}_{z/x}].$$

Unitary transformation (twist operator) :

$$\hat{U} = e^{-i\mathbf{q}_0\sum_i\mathbf{r}_i\hat{\sigma}_{zi}/2}$$

[010]

[100]

 $\mathbf{B}_{\mathrm{ext}}$

[010]

[100]

 $\mathbf{B}_{\mathrm{ext}}$

(3) THEORY (F. Perez, C. Ullrich, G. Vignale, I d'Amico):

Rotated frame :

$$\hat{H}_{SO} = -\hbar \mathbf{q}_0 \cdot \mathbf{\hat{J}}_{\mathbf{q}=\mathbf{0}}^Z + \hbar \mathbf{q}_1 \cdot \mathbf{\hat{J}}_{\mathbf{q}=\mathbf{0}}^X$$
First order 2nd order
$$\mathbf{q}_{0/1} = \frac{2m^*}{\hbar^2} [(\alpha + \beta \sin 2\varphi) \mathbf{e}_{x/z} + \beta \cos 2\varphi \mathbf{e}_{z/x}].$$

Unitary transformation (twist operator) :

$$\hat{U} = e^{-i\mathbf{q}_0 \sum_i \mathbf{r}_i \hat{\sigma}_{zi}/2}$$
$$\hat{H}' = \hat{U}\hat{H}\hat{U}^+ = \hat{H}^{SO=0} - \sum_i \frac{\hbar^2 q_0^2}{2m^*}$$
$$\hat{U}\hat{S}_{+,\mathbf{q}}\hat{U}^\dagger = \hat{S}_{+,\mathbf{q}+\mathbf{q}_0}$$

 $i\hbar\frac{d}{dt}\hat{S}_{+,\mathbf{q}} = \left[\hat{S}_{+,\mathbf{q}},\hat{H}\right] = \hat{U}^{\dagger}\left[\hat{S}_{+,\mathbf{q}+\mathbf{q}_{0}},\hat{H}'\right]\hat{U}$

(4) INTERPRETATION: OSCILLATING INVERSE SPIN-GALVANIC EFFECT

Twisted Spin Waves : control of the group velocity

Group velocity :

$$\mathbf{v}_{g,\mathbf{q}} = S_{sw}\hbar\mathbf{q}/m^* \implies \mathbf{v}_{g,\mathbf{q}} = S_{sw}\hbar(\mathbf{q} + \mathbf{q}_0)/m^*$$
no spin-orbit Twisted Spin Wave

F. Perez, F. Baboux, C. Ullrich, G.Vignale, I. d'Amico, submitted to PRL 2016

SCOPE

• Spin-wave control by spin-orbit interaction

- Twisted spin waves (our work)
- Comparison with chiral spin waves in conducting ferromagnet : DMI
- Perspectives

Chiral Spin waves in conducting ferromagnet

29

Chiral damping in conducting ferromagnet

(a) _{1.4} x propagation Linewidth $\Gamma/2\pi$ (GHz) x propagation 1.3 1.2 1.1 -20 -10 10 20 0 Wave vector $k (\mu m^{-1})$ (b) _{1.4} x propagation Linewidth $\Gamma/2\pi$ (GHz) x propagation 1.3 1.2 1.1 6 8 Frequency f (GHz)

Kai Di et al., Phys. Rev. Lett. 2015

Pt/Co/Ni

Perspectives : Snell's law for spin waves

TRMOKE

Thickness interface (Permalloy) m_z (arb. units) -1.00.0 0.5 -0.51.0 (a) interface normal (b) (a) 100 µm 40 CPW н 30 60 nm (und) 20 interface 30 nm 10 0 15 25 30 0 15 0 5 10 20 5 10 20 25 30 $x (\mu m)$ x (µm)

J. Stigloher et al., Phys. Rev. Lett. July 2016

Summary

- We have presented the discovery of a new type of spin waves, the **spin**orbit twisted spin waves [F. Perez et al. PRL 117, 137204 (2016)]
- SOTSWs exist in a magnetized, Galilean invariant system, subject to spinorbit interaction. Their dispersions experience a chiral shift in wavevector space in a vectorial form that we predict from a rigorous many-body theorem, and then verify in detail their dependence on the angle and other parameters.
- SOTSWs have the same spin-wave stiffness as SP2DEG spin waves. This gives rise to the possibility to control their group velocity.
- The SOTSW's velocity can be engineered towards applications (refraction law...).

Contributors

Raman group F. Baboux¹ (PhD), J. Gomez² (Post-doc), supervision : F.Perez Institut des NanoSciences de Paris, CNRS UMR7588

Theory

C. A. Ullrich, G. Vignale University of Missouri, USA

I. D'Amico University of York, UK

THE UNIVERSITY of York

Growth group V. Kolkovsky, Grzegorz Karczewski, Tomek Wojtowicz IFPAN, Polish Academy of Sciences, Warsaw

