Radboud Universiteit Nijmegen

Spin-orbit and spin-transfer torques in two dimensions

Mikhail Titov

Mainz 2 June 2016

People

Ivan Ado Radboud University, Nijmegen

Oleg Tretiakov

Tohoku University, Sendai

Microscopic theory of spin-orbit torque

I. A. Ado, O. A. Tretiakov, and M. Titov, arXiv:1511.07413 (2016)

Experimental Motivation

creating and driving magnetic bubbles in FM/HM bilayer by electric current

FM = ferromagnet that supports magnetic bubbles or Skyrmions HM = heavy metal with strong spin-orbit interaction (SOI)

Axel Hoffmann et.al., Blowing magnetic skyrmion bubbles, Science (2015)

Outline

- Experimental motivation
- General microscopic theory of spin torques
- Spin-orbit torques in 2D Bychkov-Rashba model
- Applications to Skyrmion dynamics
- Open questions

Towards the microscopic theory

 $oldsymbol{m}(oldsymbol{r},t)$ - magnetic texture with a constraint $|oldsymbol{m}|=1$

e.g. $\boldsymbol{f} = \gamma \boldsymbol{H}_{\text{ext}} - \alpha_G \partial_t \boldsymbol{m} + A_1 \hat{\boldsymbol{z}} \times \boldsymbol{J} + A_2 \boldsymbol{m} \times (\hat{\boldsymbol{z}} \times \boldsymbol{J}) + A_3 (\boldsymbol{J} \cdot \boldsymbol{\nabla}) \boldsymbol{m} + \dots$

Our task is to compute **f** microscopically!

Non-equilibrium quantum theory

 $m{f} = \gamma (m{H}_{
m ext} + 2 \mu_{
m B} m{s})$ See also: Tartara, Kohno, Shibata (2008)

s - local polarisation of "itinerant electrons"

$$\boldsymbol{s}(\boldsymbol{r},t) = \frac{1}{2} \langle \Psi^{\dagger}(\boldsymbol{r},t) \boldsymbol{\sigma} \Psi(\boldsymbol{r},t) \rangle = -i \operatorname{Tr}_{\sigma} \left[\frac{1}{2} \boldsymbol{\sigma} \ G^{<}(\boldsymbol{r},t;\boldsymbol{r},t) \right]$$

 $G^{<}$ - non-equilbrium Green's function

$$G^{<}(\mathbf{r}_{1}, t_{1}; \mathbf{r}_{2}, t_{2}) = \frac{i}{2}(G^{K} - G^{R} + G^{A})$$

Dyson Eq. on $G^{<}$ is reduced to the Boltzmann kinetic equation under the approximation called "gradient expansion"

Wigner Transform

$$G(\mathbf{r}_1, t_1; \mathbf{r}_2, t_2) = \int \frac{d\varepsilon}{2\pi} \int \frac{d^2 \mathbf{p}}{(2\pi)^2} e^{-i\varepsilon(t_1 - t_2) + i\mathbf{p}(\mathbf{r}_1 - \mathbf{r}_2)} G(\varepsilon, t; \mathbf{p}, \mathbf{r})$$

$$\mathbf{r}_1 + \mathbf{r}_2$$
smooth function

of all 4 variables

 $r = \frac{1}{2}$ - physical coordinate $m{t} = rac{m{t}_1 + m{t}_2}{2}$ - physical time

Equlibrium in time:

$$\begin{cases} G(t_1, t_2) = G(t_1 - t_2) \rightarrow G(\varepsilon) \\ G^{<}(\varepsilon) = if(\varepsilon) (G^R(\varepsilon) - G^A(\varepsilon)) \end{cases}$$

no t - dependence

f(arepsilon) - Fermi distribution function

Linear response

Boltzmann kinetics is difficult for spin systems!

For linear response we take on an alternative direct route through generalised "Kubo" formulas

Consider response to electric field: $E = -\frac{\partial A}{\partial t}$

$$H = H_0 - \hat{j} \cdot A$$
 $A(t) = \frac{Ee^{-i\Omega t}}{i\Omega}$ dc limit: $\Omega \to 0$

Perturbation theory:

$$G = G_0 - G_0(\hat{j} \cdot A)G_0 + \dots$$

linear response:

 $G(\mathbf{r}_1, t_1; \mathbf{r}_2, t_2) = G_0(\mathbf{r}_1, t_1; \mathbf{r}_2, t_2) - \int dt' \int d^2 \mathbf{r}' G_0(\mathbf{r}_1, t_1; \mathbf{r}', t') \hat{\mathbf{j}}(\mathbf{r}') \cdot \mathbf{A}(t') G_0(\mathbf{r}', t'; \mathbf{r}_2, t_2) + \dots$

 $G_0\,$ - corresponds to an equilibrium in time

Most general result for linear response

Contribution from the Fermi surface:

responsible for classical (Drude) results, weak localisation corrections, etc

$$\delta G^{<}(\varepsilon,t;\boldsymbol{r},\boldsymbol{r}) = \frac{-i\int d^{2}\boldsymbol{r}' \left(G_{\boldsymbol{r},\boldsymbol{r}'}^{R} \,\hat{\boldsymbol{j}}\boldsymbol{E} \,G_{\boldsymbol{r}',\boldsymbol{r}}^{A} - \frac{1}{2}G_{\boldsymbol{r},\boldsymbol{r}'}^{R} \,\hat{\boldsymbol{j}}\boldsymbol{E} \,G_{\boldsymbol{r}',\boldsymbol{r}}^{R} - \frac{1}{2}G_{\boldsymbol{r},\boldsymbol{r}'}^{A} \,\hat{\boldsymbol{j}}\boldsymbol{E} \,G_{\boldsymbol{r}',\boldsymbol{r}}^{A} \right) \left(-\frac{\partial f}{\partial \varepsilon} \right) \right]}{+\frac{1}{2i}\int d^{2}\boldsymbol{r}' \left(G_{\boldsymbol{r},\boldsymbol{r}'}^{R} \,\hat{\boldsymbol{j}}\boldsymbol{E} \,\frac{\partial G_{\boldsymbol{r}',\boldsymbol{r}}^{R}}{\partial \varepsilon} - \frac{\partial G_{\boldsymbol{r},\boldsymbol{r}'}^{R}}{\partial \varepsilon} \,\hat{\boldsymbol{j}}\boldsymbol{E} \,G_{\boldsymbol{r}',\boldsymbol{r}}^{R} - G_{\boldsymbol{r},\boldsymbol{r}'}^{A} \,\hat{\boldsymbol{j}}\boldsymbol{E} \,\frac{\partial G_{\boldsymbol{r}',\boldsymbol{r}}^{A}}{\partial \varepsilon} + \frac{\partial G_{\boldsymbol{r}',\boldsymbol{r}}^{A}}{\partial \varepsilon} \,\hat{\boldsymbol{j}}\boldsymbol{E} \,G_{\boldsymbol{r}',\boldsymbol{r}}^{R} - G_{\boldsymbol{r},\boldsymbol{r}'}^{A} \,\hat{\boldsymbol{j}}\boldsymbol{E} \,\frac{\partial G_{\boldsymbol{r}',\boldsymbol{r}}^{A}}{\partial \varepsilon} + \frac{\partial G_{\boldsymbol{r},\boldsymbol{r}'}^{A} \,\hat{\boldsymbol{j}}\boldsymbol{E} \,G_{\boldsymbol{r}',\boldsymbol{r}}^{A}}{\partial \varepsilon} \,\hat{\boldsymbol{j}}\boldsymbol{E} \,G_{\boldsymbol{r}',\boldsymbol{r}}^{A} \right) f(\varepsilon)$$

Topological contribution from the entire Fermi sea: responsible for QHE & AQHE, related to Chern number and Berry curvature

Non-locality is fully taken into account!

Conductivity

Consider electric current: $J = \langle \hat{j} \rangle = -i \operatorname{Tr} \hat{j} G^{<} = \hat{\sigma} E$

$$\sigma_{\alpha\beta}^{I} = \frac{i}{2} \int \frac{d\varepsilon}{2\pi} \left(-\frac{\partial f}{\partial \varepsilon} \right) \operatorname{Tr} \left[\hat{j}_{\alpha} G^{R} \hat{j}_{\beta} \mathcal{A} - \hat{j}_{\alpha} \mathcal{A} \hat{j}_{\beta} G^{A} \right]$$

averaging over space & disorder assumed

Main contribution:

"Kubo-Streda" for local spin polarization

$$\boldsymbol{s}(\boldsymbol{r},t) = \boldsymbol{s}^{I}(\boldsymbol{r},t) + \boldsymbol{s}^{II}(\boldsymbol{r},t)$$

 s^{I} - responsible for normal torques (spin-orbit, spin transfer etc.) s^{II} - responsible for topological (quantised) torques $s^{I}(r) = \frac{1}{2} \int d^{2}r' \operatorname{Tr}_{\sigma} \left[\sigma \left(G_{r,r'}^{R} j \cdot E \, G_{r',r}^{A} - \frac{1}{2} G_{r,r'}^{R} j \cdot E \, G_{r',r}^{R} - \frac{1}{2} G_{r,r'}^{R} j \cdot E \, G_{r',r'}^{R} j \cdot E \, G_{r',r'}^{A} j \cdot E \, G_{r',r'}^{R} j$

The formula is still fully non-local!

$$\left(i\frac{\partial}{\partial t_1} - H_1 + i0\right)G^R(t_1, \boldsymbol{r}_1; t_2, \boldsymbol{r}_2) = \delta(t_1 - t_2)\delta(\boldsymbol{r}_1 - \boldsymbol{r}_2)$$

Spin texture: gradient expansion

$$H = h(\boldsymbol{p}) + \boldsymbol{\sigma} \boldsymbol{M}(\boldsymbol{r}) \qquad \qquad \boldsymbol{M} = M \boldsymbol{m}$$

exchange coupling between texture M(r,t) and the spin of itinerant electrons

Perform Wigner transform in space assuming that **M** is a smooth function of the coordinate: gradient expansion!

If
$$H = h(\mathbf{p}) + V(\mathbf{r})$$
 then

$$G(\mathbf{r}, \mathbf{p}) = G_0 + \frac{i}{2} (G_0 \nabla V G_0 \mathbf{v} G_0 - G_0 \mathbf{v} G_0 \nabla V G_0) + \dots$$
up to the first order in the spacial gradient
where

$$G_0^R(\mathbf{r}, \mathbf{p}) = \frac{1}{\varepsilon - h(\mathbf{p}) - V(\mathbf{r}) + i0} \qquad \mathbf{v} = \nabla_{\mathbf{p}} h(\mathbf{p})$$

Also use

 $(A \circ B)(\boldsymbol{r}, \boldsymbol{p}) = A(\boldsymbol{r}, \boldsymbol{p})B(\boldsymbol{r}, \boldsymbol{p}) + \frac{i}{2} \{ (\nabla_{\boldsymbol{r}} A)(\nabla_{\boldsymbol{p}} B) - (\nabla_{\boldsymbol{p}} A)(\nabla_{\boldsymbol{r}} B) \} + \dots$ Poisson bracket

K & R tensors

Up to the first-order gradients in space:

diagrammatic representation of tensors:

σ & P tensors

One applies electric current! Electric field must be excluded from the relations:

$$s_{\alpha} = \sum_{\beta} K_{\alpha\beta} E_{\beta} + \sum_{\beta,\gamma,\delta} R^{\gamma\delta}_{\alpha\beta} (\nabla_{\delta} M_{\gamma}) E_{\beta}$$
$$J_{\alpha} = \sum_{\beta} \sigma_{\alpha\beta} E_{\beta} + \sum_{\beta,\gamma,\delta} P^{\gamma\delta}_{\alpha\beta} (\nabla_{\delta} M_{\gamma}) E_{\beta}$$

To compute SOT & STT torques one needs to compute, in addition to the conductivity tensor, also the tensors *K*, *R*, and *P* !!!

Models of disorder

Any computation of torques induced by *dc*-currents must take into account electron scattering on impurities!

$$\begin{split} V(\boldsymbol{r}) &= \sum_{i} u(\boldsymbol{r} - \boldsymbol{R}_{i}) & \begin{array}{l} \boldsymbol{R}_{i} \text{ - random impurity coordinates} \\ u(\boldsymbol{r}) &= \operatorname{impurity potential} \end{array} \\ u(\boldsymbol{r}) &= u_{0}\delta(\boldsymbol{r}) & \text{ - scalar spin-independent disorder} \\ u(\boldsymbol{r}) &= \frac{1 + \boldsymbol{\sigma}\boldsymbol{m}}{2} u_{\uparrow}(\boldsymbol{r}) + \frac{1 - \boldsymbol{\sigma}\boldsymbol{m}}{2} u_{\downarrow}(\boldsymbol{r}) & \text{ - paramagnetic disorder} \\ u(\boldsymbol{r}) &= u_{0}(\boldsymbol{r}) + u_{1}(\boldsymbol{r}) \boldsymbol{S} \cdot \boldsymbol{\sigma} & \text{ - random magnetic disorder} \end{split}$$

Gaussian limit (for spin-independent disorder): $n_{
m imp}
ightarrow \infty \quad u_0
ightarrow 0$

$$\langle V({m r})V({m r}')
angle_{
m dis}=rac{1}{m au}\delta({m r}-{m r}')$$
 ${m au}$ - scattering time

m - effective electron mass

Metal parameter

for FM/good heavy-metal bilayer

$$\frac{\sigma_{xx}}{\sigma_{xy}} \propto \varepsilon_F \tau \gg 1$$

That is why the effect of AHE is often disregarded in the system

What are the implications of this condition for spin torques?

- $\sigma_{xx} \propto arepsilon_F au$ dissipative and even in magnetisation
- $\sigma_{xy} \propto 1$ non-dissipative and odd in magnetisation

Can we make similar statements for the components of all other tensors: *K*, *R*, and *P* in a given model?

Self-consistent Born approximation (SCBA)

is justified by the condition $\varepsilon_F \tau \gg 1$

(but only for those quantities which are proportional to $\, arepsilon_F au \,$)

 $H = H_0 + V$

Model Hamiltonian

We want to apply this powerful machinery to the analysis of spin susceptibility tensors that define spin-torques!

Consider FM/heavy-metal bilayer

Integrate over z to get an effective 2D model for conduction electrons

Assume $\varepsilon_F > M$ (two Fermi surfaces)

We start with the symmetry analysis for K tensor

Symmetry of K

For the symmetry analysis we choose normal coordinates

$$H = \xi_p + lpha_R (\boldsymbol{\sigma} imes \boldsymbol{p})_z + M_z \sigma_z + M_x \sigma_x$$
 $M = M \boldsymbol{m}$
 $\hat{\boldsymbol{j}} = e \hat{\boldsymbol{v}}$ $\hat{\boldsymbol{v}} = \nabla_{\boldsymbol{p}} \xi_p + lpha_R \hat{\boldsymbol{z}} imes \boldsymbol{\sigma}$ anisotropy in the plane

symmetry I: $\sigma_x H[-p_x]\sigma_x = H[-M_z]$ $\sigma_x v_x [-p_x]\sigma_x = -v_x$ $\sigma_x v_y [-p_x]\sigma_x = v_y$ symmetry II: $\sigma_z H[-p]\sigma_z = H[-M_x]$ $\sigma_z v[-p]\sigma_z = -v$

Use the symmetries in the formula for K $K_{\alpha\beta} = \frac{e}{2} \int \frac{d^2 \mathbf{p}}{(2\pi)^2} \operatorname{Tr} \left[\sigma_{\alpha} G_{\mathbf{p}}^R \hat{v}_{\beta} G_{\mathbf{p}}^A \right]$

$$\hat{K} = \begin{pmatrix} m_z \kappa_{xx} & \kappa_{xy} \\ \kappa_{yx} & m_z \kappa_{yy} \\ m_x \kappa_{zx} & m_x m_z \kappa_{zy} \end{pmatrix}$$

 $\kappa_{\alpha\beta}$ are the functions of $m_x^2 = 1 - m_z^2$

SOT: general results

$$rac{\partial m{m}}{\partial t} = m{f} imes m{m}$$
 - magnetization dynamics
 $m{f}_{ ext{SOT}} = \hat{K}m{E}$ - non-equilibrium polarization due to SOI

 $T_{ ext{SOT}} = f_{ ext{SOT}} imes m$ - spin-orbit torque

Symmetries of the tensor in the normal coordinates:

$$\hat{K} = \begin{pmatrix} m_z \kappa_{xx} & \kappa_{xy} \\ \kappa_{yx} & m_z \kappa_{yy} \\ m_x \kappa_{zx} & m_x m_z \kappa_{zy} \end{pmatrix}$$

Alternatively one can write: $T_{
m SOT} = T^{\parallel} + T^{\perp}$

 $T^{\parallel} = a \, \boldsymbol{m} \times (\hat{\boldsymbol{z}} \times \boldsymbol{E}) - \bar{a} \, \boldsymbol{m} \times (\boldsymbol{m} \times \hat{\boldsymbol{z}}) \, (\boldsymbol{m} \cdot \boldsymbol{E})$

$$T^{\perp} = b \, \boldsymbol{m} \times (\boldsymbol{m} \times (\hat{\boldsymbol{z}} \times \boldsymbol{E})) - \overline{b} \, \boldsymbol{m} \times \hat{\boldsymbol{z}} \, (\boldsymbol{m} \cdot \boldsymbol{E})$$

 $\Delta_s = \sqrt{M_z^2 + 2\varepsilon_F m_{\rm e} \alpha_{\rm R}^2}$

A one-to-one correspondence exists between a, b, \bar{a}, b and $\kappa_{\alpha\beta}$ T^{\parallel} - changes sign under TR, hence it is anti-damping torque T^{\perp} - invariant under TR, hence it is field-like torque

Response to electric current

$$\begin{array}{ll} \mbox{introduce the tensor:} \quad \hat{K}_J = \hat{K}\hat{\sigma}^{-1} & \qquad \begin{array}{ll} \mbox{same symmetries} \\ \mbox{in normal coordinates:} \\ \hat{K}_J = \begin{pmatrix} m_z \tilde{\kappa}_{xx} & \tilde{\kappa}_{xy} \\ \tilde{\kappa}_{yx} & m_z \tilde{\kappa}_{yy} \\ m_x \tilde{\kappa}_{zx} & m_x m_z \tilde{\kappa}_{zy} \end{pmatrix} \\ \mbox{spin-orbit torque} & T_{\rm SOT} = f_{\rm SOT} \times m = T_J^{\parallel} + T_J^{\perp} \\ \hline T_J^{\parallel} = a_{\rm I} \, m \times (\hat{z} \times J) - \bar{a}_{\rm I} \, m \times (m \times \hat{z}) \, (m \cdot J), & - \mbox{field-like } ! \\ T_J^{\perp} = b_{\rm J} \, m \times (m \times (\hat{z} \times J)) - \bar{b}_{\rm J} \, m \times \hat{z} \, (m \cdot J), & - \mbox{anti-damping } ! \\ \hline \text{Note that classification to ADL and FL is now reversed!} \\ (notion of spin current is not needed for the theory) \\ \hline \text{Now:} \quad a_{\rm J}, \bar{a}_{\rm J} \propto 1 \quad b_{\rm J}, \bar{b}_{\rm J} \propto 1/\tau \\ \hline a_{\rm J} = \tilde{\kappa}_{xy} - m_x^2 \tilde{\kappa}_{zy}, & \bar{a}_{\rm J} = \tilde{\kappa}_{xy} - (\tilde{\kappa}_{xy} + \tilde{\kappa}_{yx})/m_x^2, \\ b_{\rm J} = \tilde{\kappa}_{yy}, & \bar{b}_{\rm J} = \tilde{\kappa}_{xx} + \tilde{\kappa}_{zx} + (\tilde{\kappa}_{yy} - \tilde{\kappa}_{xx})/m_x^2, \\ \hline b_{\rm J} = \tilde{\kappa}_{yy}, & \bar{b}_{\rm J} = \tilde{\kappa}_{xx} + \tilde{\kappa}_{zx} + (\tilde{\kappa}_{yy} - \tilde{\kappa}_{xx})/m_x^2, \\ \hline \end{array} \right)$$

Final results for spin-independent disorder

The "dressing" leads to immense cancelations!!!

$$\hat{K} = \kappa_s \alpha_{\rm R} m_e \begin{pmatrix} 0 & 2\tau \\ -2\tau & 0 \\ 0 & 0 \end{pmatrix}, \qquad \hat{\sigma} = \frac{e^2}{2\pi} 2\tau (\varepsilon + m_e \alpha_{\rm R}^2) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$\hat{K}_{\rm J} = \hat{K} \hat{\sigma}^{-1} = a_{\rm J} \begin{pmatrix} 0 & 1 \\ -1 & 0 \\ 0 & 0 \end{pmatrix}, \qquad a_{\rm J} = \frac{2\pi \kappa_s \alpha_{\rm R} m_e}{e^2 (\varepsilon + m_e \alpha_{\rm R}^2)} \qquad \kappa_s = \frac{\mu_B^2 \mu_0}{\pi d}$$

Only Edelstein effect survives! $M\cdot\sigma$ term is irrelevant!

$$\hat{R}^{\gamma\delta}_{\alpha\beta} = 0$$

for spin-independent disorder

SOI did not help STT torques

Thus, for the Bychkov-Rashba model with spin-independent disorder we are left with the only torque:

$$\boldsymbol{T} = a_{\mathrm{J}} \ \boldsymbol{m} \times (\hat{\boldsymbol{z}} \times \boldsymbol{J})$$

Spin-dependent disorder: stay tuned

Implications for domain motion

 $T_{\mathrm{I}}^{\parallel} = a_{\mathrm{J}} \, \boldsymbol{m} \times (\hat{\boldsymbol{z}} \times \boldsymbol{J}) - \bar{a}_{\mathrm{J}} \, \boldsymbol{m} \times (\boldsymbol{m} \times \hat{\boldsymbol{z}}) \, (\boldsymbol{m} \cdot \boldsymbol{J}),$ consider all 4 $T_{\mathrm{I}}^{\perp} = b_{\mathrm{J}} \, \boldsymbol{m} \times (\boldsymbol{m} \times (\hat{\boldsymbol{z}} \times \boldsymbol{J})) - \overline{b}_{\mathrm{J}} \, \boldsymbol{m} \times \hat{\boldsymbol{z}} \, (\boldsymbol{m} \cdot \boldsymbol{J}),$ **SOTs** again:

$$\frac{\partial \boldsymbol{m}}{\partial t} = -\gamma \, \boldsymbol{m} \times \boldsymbol{H}_{\text{ext}} + \alpha_{\text{G}} \, \boldsymbol{m} \times \frac{\partial \boldsymbol{m}}{\partial t} + \boldsymbol{T}$$

Solve Thiele equation for $m = m(r - \nu t)$

 $\nu_y = DF_y - QF_x$ **Result:**

$$\frac{s}{\nu_x} = \frac{s}{DF_x + QF_y}$$

 $Q = \frac{1}{4\pi} \int d^2 \boldsymbol{r} \, \boldsymbol{m} \cdot \left[(\nabla_x \boldsymbol{m}) \times (\nabla_y \boldsymbol{m}) \right] \quad \text{-topological charge}$

$$D_{\alpha\beta} = \frac{\alpha_{\rm G}}{4\pi} \int d^2 \boldsymbol{r} \, (\nabla_{\alpha} \boldsymbol{m}) \cdot (\nabla_{\beta} \boldsymbol{m}) = D \delta_{\alpha\beta} \quad \text{- damping}$$
$$F_{\alpha} = \frac{1}{4\pi} \int d^2 \boldsymbol{r} \, (\nabla_{\alpha} \boldsymbol{m}) \cdot \boldsymbol{f}_{\rm SOT} \quad \text{- effective force}$$

Results for Skyrmion with Q=I

$$F = 0, \text{ unless } Q = \pm 1$$
 $\frac{\nu_y}{\nu_x} = \frac{DF_y - QF_x}{DF_x + QF_y}$

for azimutally-symmetric skyrmion: $m_z = \cos \theta(
ho)$

damping coefficient:
$$D = \alpha_G \int_0^\infty d\rho \frac{\sin^2 \theta + (\rho \theta')^2}{4\rho}$$

force:

$$F^{\parallel} = \frac{\hat{z} \times J_{\delta}}{4} \int_{0}^{\infty} d\rho \left[\frac{\partial a_{J}}{\partial \rho} - \bar{a}_{J} \sin^{2} \theta \right] \sin \theta$$

$$F = F^{\perp} + F^{\parallel}$$

$$F^{\perp} = \frac{J_{\delta}}{4} \int_{0}^{\infty} d\rho \left[\frac{b_{J}}{2} \sin 2\theta + (b_{J} - \bar{b}_{J} \sin^{2} \theta) \rho \theta' \right]$$

 δ - skyrmion helicity $J_{\delta} = J \cos \delta + (J \times \hat{z}) \sin \delta$

Thus, we find no skyrmion drive when $a_J = const(\theta)$ and $\bar{a}_J = b_J = \bar{b}_J = 0$

Open question

What is the role of thermal fluctuations of domain shapes!?

Things to do

Take a closer look to the spin-dependent disorder models!

Apply the theory to treat spin torques in anti-ferromagnets!

Thank you for your attention