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Next Generation Devices Desired
Non-volatile and higher performance devices

2

Volatile

Random Access Memory

Non-Volatile

Hard Disk Drive

Cassette Tape

§ (Pros) Higher Performance
§ (Cons) Data lost when power is off

§ (Pros) Data persist when power is off
§ (Cons) Lower Performance

Non-volatile with high performance? → Next generation devices

§Current stage of information storage



Why Magnetism?
Promising candidate for the next generation devices

§ Magnetic state
§ Persists without power consumption (non-volatile)
§ Can be manipulated electrically (potentially fast)

§ Coupling between electrons and magnetism
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Lower exchange energy

Higher exchange energy

Exchange Interaction

Different properties
e.g) resistance



0 : Parallel state

Example: Electrical Detection of Magnetization
Exchange coupling allows to detect magnetization electrically

§ Magnetic Random Access Memory
§ non-volatile, faster than hard disk drives
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1: Anti-parallel state



§ Magnetic Random Access Memory
§ non-volatile, faster than hard disk drives
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Show different resistance
due to spin

Current

0 for Lower resistance
1 for Higher resistance

Example: Electrical Detection of Magnetization
Exchange coupling allows to detect magnetization electrically



§ Current-induced magnetic domain wall motion

Example: Electrical Manipulation of Magnetization
Exchange coupling allows to manipulate magnetization electrically
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Domain wall motion

§ Angular momentum conservation
§ Spin-transfer torque
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Figure from IBM

Figure from ScientificAmerican

§ Magnetic information transferred by electric fields
§ Velocity ≈ 100 m/s

Example: Electrical Manipulation of Magnetization
Exchange coupling allows to manipulate magnetization electrically
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Why Spin-Orbit Coupling?
Spin-orbit coupling becomes important in low dimensional systems,

enriches physics, and advances device application



Why spin-orbit coupling?
Nanostrucures naturally accompany ‘broken symmetry’

§ Application: towards small size
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Interface becomes dominant
Symmetry breaking at the interface

Large size

small size



Why spin-orbit coupling?
Broken symmetry gives rise to interface spin-orbit coupling, enriching physics
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Heavy metal with strong
atomic spin-orbit coupling

Thin ferromagnet ≲	1 nm

Inversion	
Symmetry	
Breaking

Strong
spin-orbit	
coupling

Interface
spin-orbit	
coupling

Time	reversal	
symmetry	breaking	

(magnetism)

Rich	Physics

• Interface: Inversion symmetry breaking
• Magnetism: Time reversal symmetry breaking

[Park, PRB (2013)]



§ The Dzyaloshinskii-Moriya interaction
§ Skrymions and Néel domain walls

§ Spin-orbit torque
§ Magnetization reversal by an in-plane current

§ [Miron, Nat. (2011)], [Liu, Science (2012)]

§ Reversed domain wall motion direction
§ [Emori, Nat. Mater. (2013)], [Ryu, Nat. Nano. (2013)]
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Why spin-orbit coupling?
Examples of the ‘rich physics’

[Duine, Nat. Nano. (2013)]

§ Perpendicular magnetic anisotropy
§ [Barnes, Sci. Rep. (2014)]

§ Rashba spin-motive force
§ [Kim, PRL (2012)]
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Motivation
A careful treatment is required for interpretation of experiments

§ Models completely different
§ A way to reconcile these two?
§ A new model required for

the interface spin-orbit coupling
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Heavy Metal

Ferromagnet
Spin-orbit coupling at the interface
- Interface Rashba effect
- Two-dimensional Rashba model

Spin-orbit coupling in the bulk
- Spin Hall effect
- Drift-diffusion equation in three-dimension

Current 𝑗$
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§ Experimental situation
§ Spin Hall angle 𝜃 = 𝑗%/𝑗$ overestimated
§ Reports on roles of the interface

[Allen, PRB (2015)], [Zhang, Nat. Phys. (2015)],
[Wang arXiv (2015)]



Quantum transport at spin-orbit coupled interfaces
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Two-Dimensional Rashba Model
A simple model for magnetic bilayers



§ Treating electrons in the ferromagnet as 2D electron gas
§ Works well for thin films
§ Simplifies the situation a lot, but some information lost
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Model for Spin-Orbit Coupled Interface
Two-dimensional (2D) Rashba model gives a simple description

𝐻 =
ℏ+𝐤+

2𝑚$
+ 𝐽𝛔 2 𝐦 + 𝛼5𝛔 2 𝐤×𝐳8

Heavy Metal

Ferromagnet

Heavy Metal

Ferromagnet

𝑧



§ Equilibrium features
§ The Dzyaloshinskii-Moriya interaction [Kim PRL (2013)]

§ Perpendicular magnetic anisotropy [Barnes Sci. Rep. (2014)]

§ Nonequilibrium features
§ Field-like spin-orbit torque [Manchon PRB (2008)]

§ Extrinsic Damping-like spin-orbit torque
[Wang, PRL (2012)], [Kim, PRB (2012)], [Pesin, PRB (2012)]

§ From spin relaxation
§ Intrinsic Damping-like spin-orbit torque [Kurebayashi, Nat. Nano. (2014)]

§ Correction to spin-motive force [Kim, PRL (2012)]
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Results from 2D Rashba model
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Beyond the Two-Dimensional Model
Interpretations of experimental data require a three-dimensional model

Quantum transport at spin-orbit coupled interfaces
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A Three-Dimensional (3D) Model
3D Rashba model for interface spin-orbit coupling is desirable

𝑧

Spin-orbit coupling at the interface 𝑧 = 0

𝐻 =
ℏ+𝐤+

2𝑚$
+ 𝐽𝛔 2 𝐦𝛩 𝑧

								+𝐻< +
ℏ+ℎ5
2𝑚$

𝛔 2 𝐤×𝐳8 𝛿 𝑧

Heavy Metal

Ferromagnet

[Haney, PRB (2013)]

𝐻<: interface potential 𝑧 = 0 ∝ 𝛿 𝑧 other than spin-orbit coupling
e.g.) interface magnetism, interface barrier

§ Previous attempts to this model
§ Numerical works [Haney, PRB (2013)], [Amin, in preparation (2016)]

§ Restricted to the equal Fermi surface model
§ Analytic works [Chen, PRL (2015)], [Zhang, PRB (2015)]

§ Focused on a few phenomena with different formalisms



A Three-Dimensional (3D) Model
Scattering formalism gives a simple way to examine the 3D model
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𝑧

Spin-orbit coupling at the interface 𝑧 = 0

Heavy Metal

Ferromagnet

§ Difficulty of the model
§ The solution depends on the details of 𝐻<
§ Cannot be an analytic theory in general

§ How can we deal with 𝐻< in a general way?
→ Express 𝐻< by scattering matrices!

𝐻 =
ℏ+𝐤+

2𝑚$
+ 𝐽𝛔 2 𝐦𝛩 𝑧

								+𝐻< +
ℏ+ℎ5
2𝑚$

𝛔 2 𝐤×𝐳8 𝛿 𝑧



Scattering Matrix Formalism
Provides a background for a general analytic theory

§ 𝐻< ↔ 𝑟, 𝑡, 𝑟D, 𝑡′

§ 𝐻< + ∆𝐻< ↔ 𝑟 + ∆𝑟, 𝑡 + ∆𝑡, 𝑟D + ∆𝑟′, 𝑡′ + ∆𝑡′

§ Perturbation theory applicable
§ Our case : ∆𝐻< =

ℏGHI
+JK

𝛔 2 𝐤×𝐳8 𝛿 𝑧
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𝑧
Normal Metal

Ferromagnet
Interface scattering 𝐻<

r

t r’

t’

2 X 2 scattering matrices

r : reflection matrix
t : transmission matrix



§ General formula independent of the scattering potential

§ Easy to connect to first-principles calculations
§ Expressions in terms of the reflection and transmission matrices

§ Well-studied: analogous to the conventional circuit theory
§ Conductance matrices

§ Spin-transfer torque
§ Spin pumping
§ Boundary conditions for the

spin drift-diffusion equation
§ Gilbert damping
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Scattering Matrix Formalism
Advantages

Normal Metal

Ferromagnet
G↑ G↓ G↑↓

Non-collinear spin injection

[Brataas, PRL (2000)]

[Brataas, PRL (2008)]

Modified scattering matrices will give all of the above quantities, and even more!
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Results and Implications
Effects of the interface spin-orbit coupling go beyond quantitative corrections

Quantum transport at spin-orbit coupled interfaces



Results
Perturbation of the scattering matrices

§ Correction due to spin-orbit coupling
§ 𝑡𝐤 = 𝑡𝐤L − 𝑖

HI
+OP

𝑡𝐤L𝛔 ⋅ 𝐤×𝐳8 1 + 𝑟𝐤L

§ 𝑡𝐤D = 𝑡𝐤DL − 𝑖 HI
+OP

1 + 𝑟𝐤L 𝛔 ⋅ 𝐤×𝐳8 𝑡𝐤DL

§ 𝑟𝐤 = 𝑟𝐤L − 𝑖
HI
+OP

1 + 𝑟𝐤L 𝛔 ⋅ 𝐤×𝐳8 1 + 𝑟𝐤L

§ 𝑟𝐤D = 𝑟𝐤DL − 𝑖 HI
+OP

𝑡𝐤L𝛔 ⋅ 𝐤×𝐳8 𝑡𝐤DL

§ Matrices no longer rotationally symmetric
§ In-plane current from a perpendicular (spin) potential difference
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r’

t’ NM

FM

r

t

Spin-orbit coupling contributions
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Implications – Transverse current generation
The modified scattering matrices implies in-plane current from perpendicular voltage

§ In-plane current generation
§ Phenomenology similar to

the (inverse) spin Hall effect
§ Crucial for interpretations of 

experiments
NM

FM

∆𝜇$,∆𝜇%
In-plane

NM

FM

Pe
rp
en
di
cu
la
r	
	

∆𝜇$,∆𝜇%

§ c.f.) Without spin-orbit coupling
§ No in-plane current

∆𝜇$, ∆𝜇% :	chemical potential difference
e.g.) voltage across the interface



26

Implications – Longitudinal transport
Second order calculation shows spin memory loss for perpendicular transport

Spin memory loss at the interface
(due to spin-orbit coupling)

𝑗↑
𝑗↓

=
𝐺XYZ↑ 𝐺[\
𝐺[\ 𝐺XYZ↓

Δ𝜇↑
Δ𝜇↓

NM

FM

Pe
rp
en
di
cu
la
r	
	

∆𝜇$,∆𝜇%

§ First order calculation
§ No correction to the perpendicular transport

§ The same interface conductance : 𝐺↑, 𝐺↓,𝐺↑↓

§ Second order calculation
§ Collinear transport for simplicity



§ Onsager reciprocity
§ Perpendicular spin current induced 

by in-plane electric field
→ Spin-transfer torque

§ In-plane shift of distribution 
function Δ𝑘_ = 𝑒𝐸𝜏/ℏ
§ STT = Im 𝑇 𝐦× 𝐲8×𝐦 +Re 𝑇 𝐦×𝐲8

§ 𝑇 = ℎ5
$Gklm
noJKp

∑ OrG

OP
1 − 𝑟𝐤↑𝑟𝐤↓∗ 𝑟𝐤↓ − 𝑟𝐤↑∗

§ Theory easily applicable for 
ferromagnetic insulators and 
topological insulators
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Implications – In-plane bias effects
Onsager reciprocity of the in-plane current gives spin-transfer torque

Onsager

NM

FM

Pe
rp
en
di
cu
la
r	

Electric field

NM

FM

∆𝜇$,∆𝜇%
In-plane



§ Second order study for
an in-plane bias
§ Anisotropic magnetoresistance

(like spin Hall magnetoresistance)

§ Anisotropic magnetoresistance
∝ − 𝑚_

+ + 3𝑚u
+

§ Consistent with the previous report 
[Zhang, PRB (2015)],
but obtained in a different context

§ Spin Hall magnetoresistance
∝ −𝑚u

+

§ Distinction possible from the 
different behaviors?

Implications – In-plane bias effects
: Second order calculation gives anisotropic magnetoresistance

Figures from [Cho Sci. Rep. (2015)]

Only spin Hall



Future directions

§ Reexamination of the existing experimental reports
§ Careful treatment for extracting the spin Hall angle

§ Berry phase contribution?
§ Calculation possible from the eigenstates

§ Scattering theory of damping
§ Gives chiral damping? [Jue Nat. Mater. (2015)]

§ Spin pumping
§ Scattering formalism of spin pumping, developed by Green’s function 

only [Chen PRL (2015)]

§ Application for other contexts such as topological insulators, 
lanthanum aluminate-strontium titanate interface (LAO/STO), 
…
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Summary of Part 1

§ 2D Rashba model for magnetic bilayers are well-studied

§ Interpretations on experimental results require a 3D theory

§ We adopt the scattering matrix formalism and find modified 
expressions of scattering matrices
§ Modified conductance matrices
§ Spin memory loss at the interface
§ Spin-orbit torque
§ Anisotropic magnetoresistance

§ We expect our theory can be applied to other contexts such 
as topological insulators.
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Motivation
A new physics in one side implies a new physics in the other side

32

§ One-to-One Correspondence [Kim, PRL (2013)]

§ There is one-to-one correspondence between
magnetic texture effects and Rashba spin-orbit coupling effects

Domain Wall Rashba Spin-Orbit Coupling

𝐻 =
ℏ+𝐤+

2𝑚$
+ 𝐽𝛔 2 𝐦 + 𝛼5𝛔 2 𝐤×𝐳8

Texture (gradient) effect Spin-orbit coupling effect

Gauge transform



Motivation
A new physics in one side implies a new physics in the other side
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§ One-to-One Correspondence [Kim, PRL (2013)]

§ There is one-to-one correspondence between
magnetic texture effects and Rashba spin-orbit coupling effects

Adiabatic STT

Non-adiabatic STT

Field-like SOT

Damping-like SOT

Domain Wall Rashba Spin-Orbit Coupling

Exchange Interaction Dzyaloshinskii-Moriya Interaction

Spin-motive force [Barnes 2005] Rashba spin-motive force [Kim (2012)]
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Current-Induced Domain Wall Motion
Introduction to non-adiabatic spin-transfer torque

Intrinsic non-adiabatic spin-transfer torque



Spin-Transfer Torques (STTs) in Domain Walls
Adiabatic and non-adiabatic STTs

§ Adiabatic STT
§ 𝐓wxyw = 𝑏{𝐦× 𝜕_𝐦×𝐦
§ Drives the DW motion
§ Angular momentum conservation

§ Non-adiabatic STT (β) [Zhang, PRL (2004)]

§ 𝐓}Y} = −𝛽𝑏{𝐦×𝜕_𝐦
§ Determines the DW velocity
§ Something beyond : main mechanism still unclear

§ Spin relaxation
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𝑏{ =
𝑃𝑗$𝜇�
𝑒𝑀[

Current je

𝑣�� =
𝛽
𝛼 𝑏{

α : Gilbert damping

Domain Wall (DW)



Intrinsic vs Extrinsic in Spin-Orbit Coupling Systems
Can be applied to a magnetic textured system

§ Extrinsic
§ Dependent on scattering
§ Examples

§ Extrinsic spin Hall effect
§ Extrinsic spin-orbit torque

§ Intrinsic
§ Independent of scattering
§ Examples

§ Intrinsic spin Hall effect
§ Intrinsic spin-orbit torque
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§ Textured system
§ Magnetic texture  → Effective spin-orbit coupling
§ Non-adiabatic STT from spin relaxation [Zhang, PRL (2004)] : Extrinsic

§ Hard to enhance β/α significantly
§ Non-adiabatic STT from an intrinsic mechanism (?)

§ Efficient DW motion : mechanism not enhancing α
§ Better physical understanding



Intrinsic non-adiabatic spin-transfer torque
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Intrinsic Spin-Orbit Torque
Provides a template for studying the intrinsic spin-transfer torque in DW motion



§ Rashba spin-orbit coupling
§ Structural inversion asymmetry

§ Field-like SOT [Manchon PRB (2008)]

§ Current : More y spins, less –y spins
§ 	𝐓\y�Zx = 𝑘5𝑏{𝐲8×𝐦

Spin-Orbit Torques (SOTs) in Rashba systems
Extrinsic Field-like and Damping-like SOTs
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𝐻 =
ℏ+𝐤+

2𝑚$
+ 𝐽𝛔 2 𝐦 +

ℏ+𝑘5
2𝑚$

𝛔 2 𝐤×𝐳8
Heavy	Metal	(Pt,	Ta…)

Ferromanget (Co,	CoFeB...)

§ Damping-like SOT
[Wang PRL, Kim PRB, Pesin PRB (2012)]

§ Similar to the non-adiabatic STT
§ Mechanism still unclear

§ Spin relaxation
§ 	𝐓xw�� = −𝛽𝑘5𝑏{𝐦× 𝐲8×𝐦

Figure without m for simplicity,

kx

ky

scattering time



Intrinsic Damping-like SOT
Damping-like SOT independent of scattering

§ Intrinsic Damping-like SOT [Kurebayashi. Nat. Nano. (2014)]

§ Wave function change due to an electric field
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Without an electric field With an electric field

Additional source of damping-like SOT
𝐓xw��y}� ∝ 𝐦× 𝐲8×𝐦

Independent of scattering → intrinsic

kx

ky



Intrinsic non-adiabatic spin-transfer torque
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Chiral Derivatives
One-to-one correspondence between spin-orbit coupling systems and textured systems



One-to-One Correspondence
Between texture effects and spin-orbit coupling effects 

§ One-to-One Correspondence [Kim, PRL (2013)]

§ Chiral derivatives
§ Example) Adiabatic STT   →   Field-like SOT

𝑏{𝐦× 𝜕_𝐦×𝐦 ⟶	𝑘5𝑏{𝐲8×𝐦
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Adiabatic STT

Non-adiabatic STT

Field-like SOT

Damping-like SOT

Domain Wall Rashba Spin-Orbit Coupling

Exchange Interaction Dzyaloshinskii-Moriya Interaction

Spin-motive force Rashba spin-motive force

𝜕_𝐦⟶ 𝑘5𝐲8×𝒎



One-to-One Correspondence
Between texture effects and spin-orbit coupling effects 

§ One-to-One Correspondence [Kim, PRL (2013)]

§ Chiral derivatives
§ Example) Adiabatic STT   →   Field-like SOT

𝑏{𝐦× 𝜕_𝐦×𝐦 ⟶	𝑘5𝑏{𝐲8×𝐦
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Adiabatic STT

Extrinsic Non-adiabatic STT

Field-like SOT

Extrinsic Damping-like SOT

Domain Wall Rashba Spin-Orbit Coupling

Exchange Interaction Dzyaloshinskii-Moriya Interaction

Spin-motive force Rashba spin-motive force

𝜕_𝐦⟶ 𝑘5𝐲8×𝒎

Intrinsic Damping-like SOTIntrinsic Non-adiabatic STT (?)



Intrinsic non-adiabatic spin-transfer torque
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Intrinsic Non-adiabatic Spin-Transfer Torque
Non-adiabatic spin-transfer torque independent of scattering rate



Intrinsic Non-adiabatic STT
Non-adiabatic STT independent of scattering

§ Intrinsic Non-adiabatic STT
§ Wave function change due to an electric field
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Without an electric field With an electric field 
(exaggerated)

∆ 𝛔 ∝ 𝐸𝜕_𝐦
𝐓𝐧𝐨𝐧𝐢𝐧𝐭 ∝ 𝐸𝐦×𝜕_𝐦

Non-adiabatic STT form

𝐓 = −
𝑛%𝜇�ℏ𝑒𝐸_
2𝑚$𝐽𝑀%

𝐦×𝜕_𝐦

Magnetization

Spin expectation value



Intrinsic Non-adiabatic STT vs Intrinsic Damping-like SOT
The features are the same

§ Intrinsic Non-adiabatic STT § Intrinsic Damping-like SOT
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Mathematical forms

𝐓xw��y}� ∝ 𝐦× 𝐲8×𝐦𝑻}Y}y}� ∝ 𝐦×𝜕_𝐦 𝜕_𝐦 ↔ 𝑘5𝐲8×𝐦

Chiral derivatives

§ Additional component for each state
§ From wave function change
§ Electric-field-induced
§ Fermi sea contribution
§ Intrinsic (independent of scattering)

Features



Magnitude of Intrinsic Non-adiabatic STT
Intrinsic Non-adiabatic STT can be the dominant contribution

§ DW velocity 

§ Magnitudes
§ βint / βext ~ τsr/τmr

§ 1/τmr ~ 1014 to 1015 s-1 (momentum relaxation)
§ 1/τsr ~ 1012 s-1 (spin relaxation)
§ βint can be much larger than βext!

§ Impurity effects
§ Impurity effect : βint and βext similar magnitudes
§ Future challenge : Determining the dominant contribution
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𝐓}Y} = 𝐓}Y}��� + 𝐓}Y}y}� = − 𝛽��� + 𝛽y}� 𝑏{𝐦×𝜕_𝐦

𝑣�� =
𝛽��� + 𝛽y}�

𝛼 𝑏{



Summary of Part 2

§ STT-SOT Correspondence
§ Recent discovery on intrinsic damping-like SOT
§ Corresponding intrinsic non-adiabatic STT

§ Features of intrinsic non-adiabatic STT
§ Originates from wave function change
§ Electric-field-induced
§ Scattering-time-independent
§ Fermi sea contribution
§ Mechanism not enhancing damping
§ Can be the dominant contribution of the non-adiabatic STT
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More information – [Kim et al., PRB 92, 224426 (2015)]



Summary

§ Magnetism: Promising candidate for next generation device

§ Spin-orbit coupling
§ Arises in symmetry broken nanostructures
§ Raises efficiency of possible spintronic devices
§ Effects on spin dynamics not clearly understood

§ Theoretical study of spin-orbit
coupling effects
§ Advances spintronic device application
§ Predicts qualitatively different physics
§ Deepen the understanding

of magnetic systems
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Backup slides
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Normal Metal

Ferromagnet

Angular momentums

1. Spin current in the NM

2. Spin current in the FM : angular 
momentum absorbed by bulk magnetism

3. Angular momentum
absorbed by interface magnetism

4. Angular momentum
absorbed by lattice (spin-orbit)

Angular momentum conservation : 1 = 2+3+4

Spin-transfer torque = 2+3 = 1-4

1 : calculate from the modified reflection matrix
4 : given by the quantum boundary condition (current absorption by the delta function potential)
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Intrinsic Non-adiabatic STT in Real Situations
Suppression due to impurities

§ Large suppression of βint due to impurity (even tiny amount)

§ Same thing happens in intrinsic spin / anomalous Hall effects
[Inoue (2003, 2004, 2006)]
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βint Free	electron	model General dispersion

Nomagnetic
impurities 0 Non-zero

With	magnetic	
impurities Non-zero Non-zero



Comparison
Between two roles of electric fields – Distribution shift and wave function change
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§ Change the occupation
§ Current-induced
§ Fermi surface contribution
§ Extrinsic
§ Studied intensively

§ Additional component for each state
§ Electric-field-induced
§ Fermi sea contribution
§ Intrinsic
§ Has rarely received attention

scattering time


