

Spin current swapping and spin Hall effect in a 2DEG

Roberto Raimondi

Dipartimento di Matematica e Fisica, Università Roma Tre http://websusers.fis.uniroma3.it/raimondi

January 26, 2016

Talk given at the Johannes Gutenberg Universität Mainz

 Spin-charge and spin-spin couplings: spin current swapping vs Hanle spin Hall effect

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Spin Hall effect due to skew-scattering by phonons

Spin Hall effect in systems with striped spin-orbit coupling

Spin-orbit coupling:
$$H_{so} = -\lambda^2 \sigma \times \nabla V_{imp}(\mathbf{r}) \cdot \mathbf{p}$$

- λ Effective Compton wavelength
- Effective magnetic field $\mathbf{B}_{imp} \sim \lambda^2 m \mathbf{F}_{imp} \times \mathbf{v} \propto \mathbf{\hat{z}}$
- Spin precesses around the z axis yielding a x component
- Primary spin current J_x^y
- Secondary spin current J_v^X

$$J_{i}^{a} = \kappa \left(J_{a}^{i} - \delta_{ia} \sum_{l} J_{l}^{l}
ight)$$

For dimensionless coupling $\kappa = \lambda^2 k_F^2$, k_F^{-1} being the only relevant length

Scattering amplitude in the presence of spin-orbit coupling

$$\begin{split} S_{\mathbf{p}\mathbf{p}'} &= A + B \mathbf{\hat{p}} \times \mathbf{\hat{p}'} \cdot \sigma \\ \text{The density matrix changes upon scattering } \rho_{\mathbf{p}} \to \rho_{\mathbf{p}'} = S_{\mathbf{p}\mathbf{p}'} \rho_{\mathbf{p}} S^*_{\mathbf{p}\mathbf{p}'} \end{split}$$

Various processes

- Standard scattering $\propto |A|^2 + |B|^2$
- 2 Elliott-Yafet spin relaxation $\propto 2|B|^2$
- **③** Mott skew-scattering or spin-charge coupling (SCC) $\propto AB^* + A^*B$
- Spin current swapping (SCS) $\propto AB^* A^*B$

Comment

Spin current swapping more robust than skew-scattering because already exists at the level of Born approximation when A real, B imaginary

How to observe the effect?

Non trivial question

In principle, generation of a primary spin current in response to the conjugated spin vector potential A_x^y In practice, application of an electric field E_x to drift a spin polarization S^y ,

 $J_x^y \propto S^y E_x$

However, the effective magnetic field generated by the electric field is equal and opposite to the one generated by impurities ($\langle \nabla V_{imp} \rangle = \mathbf{E}$ in the steady state).

The effect of a magnetic field along y

- Apply an eletric field *E_x*
- Primary spin current J_x^y
- The spin Hall effect generates J_y^z in response to E_x
- The spin polarization along z precesses around the external magnetic field: $J_y^z \to J_y^x$
- The "precessed" spin current cannot be distinguished from the "swapped" one

The Hanle spin Hall effect

A model calculation (See PRB 92, 035301 (2015))

- 2DEG with density of states $N_0=m/2\pi$ and density $n=k_F^2/2\pi$
- \bullet Applied uniform magnetic field along \times with Zeeman energy Δ
- Standard white-noise disorder $\langle V(\mathbf{r})V(\mathbf{r}')\rangle = \frac{1}{2\pi N_0 \tau}$ with τ the scattering time and $D = v_F^2$ the diffusion coefficient
- Apply uniform electric field E_x and evaluate the Kubo formula

Charge and primary spin current

$$J_{x} = \sigma_{xx}E_{x}, \ \sigma_{xx} = 2e^{2}N_{0}D$$
$$J_{x}^{x} = \sigma_{xx}^{x}E_{x}, \ \sigma_{xx}^{x} = \frac{(-e)}{4\pi}\Delta\tau$$

Note: the primary spin current is the algebraic sum of the number currents of the two spin populations

To lowest order in the spin-orbit coupling

- side-jump-like diagrams (b and c) as those considered in the SHE (Tse and Das Sarma PRL 96, 056601 (2006));
- vertex corrections diagrams (d and e).

- • spin-independent impurity potential
- \times spin-orbit coupling due to impurity potential

$$J_x^x = \sigma_{xx}^x E_x, \ \sigma_{xx}^x = \frac{(-e)}{4\pi} \Delta \tau$$
$$J_y^y = \sigma_{yx}^y E_x, \ \sigma_{yx}^y = en\lambda^2 \frac{\Delta \tau}{1 + \Delta^2 \tau^2}$$

The effect of an exchange field and the Hanle SHE (Ka et al. PRB $\mathbf{92}$, 035201 (2015))

• What about the "apparent" swapping?

$$\kappa = \frac{\sigma_{y_X}^y}{\sigma_{x_X}^x} = -2k_F^2 \lambda^2 \frac{1}{1 + \Delta^2 \tau^2} \to_{\Delta \to 0} -2k_F^2 \lambda^2 \tag{1}$$

which is in agreement with LD's prediction provided $\sigma^x_{xx}\neq 0,$ which is not the case in the present situation

• The side-jump contribution to the SHE is

$$J_{y}^{z} = \sigma_{yx}^{z} E_{x}, \ \sigma_{yx}^{z} = en\lambda^{2}$$
⁽²⁾

and σ_{yx}^{y} can be interpreted as the Hanle effect of the spin polarization associated to the spin current in the SHE. Notice that the momentum relaxation time τ enters the expression of the precession factor

• The question arises about what happens when considering higher order, in the impurity potential, diagrams? What about the HSHE from skew-scattering?

Higher order terms and skew-scattering HSHE

Higher (third) order diagrams

- • spin-independent impurity potential
- × spin-orbit coupling due to impurity potential

Key observations

- New diagrams have the same structure as "parent" diagrams with the renormalization of the scattering amplitude $v_0 \rightarrow v_0 + \delta v^{R(A)} \equiv v^{R(A)}$
- $v^{R(A)} = v_0 \mp i\pi N_0 v_0^2$
- Diagrams can be classified in two classes:

 $\bigcirc \propto v^R + v^A$, scattering time renormalization, not present at this (third) order $\oslash \propto v^R - v^A \sim AB^* + A^*B$ yields the skew-scattering contribution to the HSHE

SU(2) point of view

The potential in the spin-orbit Hamiltonian includes also the contribution due to the applied electric field $V(\mathbf{r}) = V_{imp}(\mathbf{r}) + e\mathbf{r} \cdot \mathbf{E}$

- Effective spin-dependent vector potential $H_{so,E} = \mathbf{p} \cdot \mathbf{A}, \ \mathbf{A} = \mathbf{A}^a \sigma^a / 2$
- Only components $A_x^z = 2em\lambda^2 E_y, \ A_y^z = -2em\lambda^2 E_x$
- Covariant derivative in drift-diffusion equation $(\nabla_i O)^a = \partial_i O^a \varepsilon^{abc} A^b_i O^c$
- Spin current $J_i^a = -\frac{e\tau}{m} S^a E_i D(\nabla_i S)^a + \kappa \left(J_a^i \delta_{ia} J_j^l \right) \theta_{SH} \varepsilon_{ija} J_j$

SCS with non-uniform conditions

$$J_x^y = (J_x^y)^{drift} + (J_x^y)^{diff} - \kappa (J_y^y - (J_y^y)^{drift}) J_y^y = (J_y^y)^{drift} + (J_y^y)^{diff} - \kappa (J_x^x - (J_x^x)^{drift})$$

Only the diffusion part of the primary spin current contributes to spin current swapping

Suggested experimental set up

- Inject a spin current from the FM electrode (blue) into the PM system (red)
- Spin primary diffusion currents flow in the horizonatal arm (J^y_x) and vertical arm (J^y_y)
- Spin secondary current J_y^{\times} flows in the vertical arm
- S^x spin polarization accumulates at the ends of the vertical arm with opposite sign and can be detected either by ISHE or Faraday rotation

Why phonon skew scattering?

 $\bullet\,$ On the contrary, if $\theta^{sH} \sim {\bf T},$ the side-jump mechanism dominates

Vila et al. PRL 99, 226404 (2007); Niimi et al. PRL 106, 126601 (2011); Isasa et al. PRB 91, 024402 (2015); Hankiewicz et al. PRL 97, 266601 (2006).

Review of the Debye model for electron-phonon coupling

- Start from elasticity theory with displacement field $\mathbf{u}(\mathbf{r},t)$
- After quantization introduce the phonon field

$$\hat{\phi}(\mathbf{r}) = i \sum_{\mathbf{k}} \sqrt{\frac{v_s k}{2V}} \left(\hat{b}_{\mathbf{k}} e^{i\mathbf{k}\cdot\mathbf{r}} - h.c. \right), \quad \hat{\phi}(\mathbf{r}) = v_s \sqrt{\rho} \nabla \cdot \mathbf{u}(\mathbf{r}), \ \rho: \text{ mass density}$$

• Replace the impurity potential with the phonon potential

$$V_{imp}(\mathbf{r}) \rightarrow V_{ph}(\mathbf{r}) = g\hat{\phi}(\mathbf{r}), \ g: \ \text{electron} - \text{phonon coupling}$$

Average over phonon configurations taking anharmonic cubic terms

$$H_{an} = \frac{\Lambda}{3!} \int \mathrm{d}\mathbf{r} \ \hat{\phi}^3(\mathbf{r})$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

where $\Lambda=-\gamma/\textit{v_s}\sqrt{\rho}$ is related to the Grüneisen parameter $\gamma\sim2-3$

- Dashed line = impurity average
- Wavy line = phonon propogator
- $\times =$ impurity potential
- • = phonon potential
- filled square = spin-orbit coupling
- gray dot = three-phonon term

Debye temperatures in metals: $T_D = 165$ K for Au, $T_D = 240$ K for Pt and Ta For $T > T_D$,

- phonon dynamics becomes irrelevant, and phonon potential behaves almost as a static one as for the impurity potential
- phonon averages can be done semiclassically with the equipartition theorem

$$\begin{split} &\langle \hat{\phi}(\mathbf{r}_1) \hat{\phi}(\mathbf{r}_2) \rangle = kT \delta(\mathbf{r}_1 - \mathbf{r}_2) \\ &\langle \hat{\phi}(\mathbf{r}_1) \hat{\phi}(\mathbf{r}_2) \hat{\phi}(\mathbf{r}_3) \rangle = -\Lambda(kT)^2 \delta(\mathbf{r}_1 - \mathbf{r}_2) \delta(\mathbf{r}_1 - \mathbf{r}_3) \end{split}$$

• The Keldysh technique in the high-T regime confirms this result

$$\frac{\Lambda g^3}{4} \int_4 \left[D_{14}^R D_{24}^K D_{34}^K + D_{14}^K D_{24}^R D_{34}^K + D_{14}^K D_{24}^K D_{34}^R \right] \sim -3\Lambda g^3 (k_B T)^2$$

by using

$$D^{K}(\mathbf{k},\omega) = -\mathrm{i}\frac{\hbar\omega_{\mathbf{k}}}{2} \coth\left(\frac{\beta\hbar\omega_{\mathbf{k}}}{2}\right) 2\pi \left[\delta(\omega-\omega_{\mathbf{k}}) + \delta(\omega+\omega_{\mathbf{k}})\right] \to \sim T$$

(日) (日) (日) (日) (日) (日) (日) (日)

Naive derivation (Gorini et al. PRL 115, 076602 (2015))

Correspondence impurity-phonons

$$n_i v_0^2 \rightarrow g^2 kT = \frac{1}{2\pi N_0 \tau_{e-ph}}$$
$$n_i v_0^3 \rightarrow -3\Lambda g^3 (kT)^2 = \frac{1}{2\pi N_0 \tau_{e-ph}} (-3kTg\Lambda)$$

Using the correspondence with impurity

• Skew-scattering from impurities

$$\sigma_{ss,imp}^{sH} = \frac{\lambda^2 k_F^2}{4} \frac{en}{m} 2\pi N_0 v_0 \tau_{imp}$$

scales as conductivity $\sim au_{imp}$

Skew-scattering from phonons

$$\sigma_{ss,ph}^{sH} = -\frac{\lambda^2 k_F^2}{4} \frac{en}{m} \frac{\hbar \Lambda}{g} \sim \sigma_{ss,imp}^{sH} \frac{\gamma}{\varepsilon_F \tau_{imp}} \sim 0.1 \sigma_{ss,imp}^{sH}$$

is T-independent, while $\sigma \sim au_{e-ph} \sim T^{-1}$

Temperature dependence of the Spin Hall Angle

New point of view

- $\sigma \sim T^{-1}$ is *T*-dependent via e-ph scattering
- σ_{ss}^{sH} is *T*-independent at high *T*
- $\bullet\,$ Combine with Rashba (Δ) spin splitting

$$\theta^{sH} = \frac{1}{\sigma} \frac{\sigma_{int}^{sH} + \sigma_{ext}^{sH}}{1 + \tau_{EY}/\tau_{DP}}$$

Diffusive $\Delta \ll T$

$$\sigma_{int}^{sH} \sim T^{-2}, \tau_{EY} \sim T^{-1}, \tau_{DP} \sim T$$

From weak (darker) to stronger (lighter) $\sigma_{ext}^{sH}/(e/8\pi)$

Warnings and future perspectives

- higher anharmonic terms may give a T-behavior of σ_{ss}^{sH} opposite to σ
- intermediate temparature regime $T \leq T_D$ needs to be studied
- non-parabolic terms may affect the T-behavior of side-jump (Gorini 2015)

The disordered Rashba model and the Spin Hall Effect: brief review

 E. I. Rashba, Sov. Phys. Solid State 2, 1109 (1960); Bychkov and Rashba, JETP Lett. 39, 78(1984); J. Phys. C: Solid State Phys. 17, 6093 (1984).

$$H = \frac{p^2}{2m} + \alpha (p_y \sigma^x - p_x \sigma^y) + V(\mathbf{r})$$

• Intrinsic SHE $j_y^z = \sigma^{sH} E_x = (e/8\pi) E_x$, Sinova et al. PRL **92**, 126603 (2004)

Disorder introduces spin relaxation

$$\tau_{DP} = \frac{L_{so}^2}{D} = (2m\alpha)^2 D = 2m^2 \alpha^2 v_F^2 \tau$$

Dyakonov and Perel, SOv. Phys.-Solid State 13, 3023 (1971)

However, "subtle is the Lord" and there can be no SHE in *static* and *uniform* conditions

$$\partial_t \mathbf{s}^y + \nabla \cdot \mathbf{j}^y = -2m\boldsymbol{\alpha}\mathbf{j}_y^z$$

Dimitrova, PRB **71**, 245327 (2005). although \Rightarrow SHE still possible at *edges*, in *transient* regime (Mishchenko et al. PRL **93**, 226602 (2004); Raimondi et al. PRB **74**, 035340 (2006)), with random SOC (Moca et al. PRB **77**, 193302 (2008); Dugaev et al. PRB **82**, 121310 (2010); Dyrdal et al. Acta Phys. Pol. A **127**, 499 (2015))

Question

Can we taylor the SOC so to have SHE in static and uniform conditions?

- With a space-dependent α , the Dimitrova constraint no longer implies the vanishing of the spin current
- The standard vanishing occurs due to an exact compensation between two terms:
 - \Rightarrow diffusion contribution from non-abelian SU(2) covariant derivative
 - \Rightarrow drift contribution from Lorentz-like force due to SU(2) magnetic field

$$j_{y}^{z} = \sigma^{sH} E_{x} - D(-\varepsilon^{z \times y} 2m\alpha s^{y})$$

• It may be possible to unbalance such compensation so to have a finite spin current

General idea

Single-interface model

$$\alpha
ightarrow lpha(x) = heta(x) lpha_+ + heta(-x) lpha_-$$

Interpolating solution

$$S^{y}(x) = \theta(x) \left(S_{0,+} + \delta s_{+} e^{-x/L_{+}} \right) \\ + \theta(-x) \left(S_{0,-} + \delta s_{-} e^{x/L_{+}} \right),$$

Main message

Non-zero spin current exponentially localized at the interface

Strong Rashba coupling in LAO/STO $_{\rm Nitta\ et}$

al. PRL 78, 1335 (1997); Caviglia et al. PRL 104, 126803 (2010); Hurand

et al. Sci. Rep. 5, 12751 (2015)

Why the lattice? No need for a small expansion parameter (Nomura et al. PRB 72, 165316 (2005))

$$H = \sum_{ij\sigma} t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} + \sum_{i\sigma} (V_i - \mu) c_{i\sigma}^{\dagger} c_{i\sigma} + H^{RSO},$$

Disorder distrubution $-V_0 \leq V_i \leq V_0$

$$H^{RSO} = -i \sum_{i\sigma\sigma'} \alpha_{i,i+x} \left[c^{\dagger}_{i\sigma} \tau^{y}_{\sigma\sigma'} c_{i+x,\sigma'} - c.c. \right]$$

+ $i \sum_{i\sigma\sigma'} \alpha_{i,i+y} \left[c^{\dagger}_{i\sigma} \tau^{x}_{\sigma\sigma'} c_{i+y,\sigma'} - c.c. \right]$

Rashba SOC on a lattice

The Stripes modulation

$$\begin{aligned} \alpha_{i,i+x} &= \frac{1}{2} \left[a_0 + a_1 + (a_0 - a_1) \operatorname{sgn}(\sin \frac{2\pi i_x}{2L}) \right] \\ \alpha_{i,i+y} &= \alpha_{i,i+x}, \end{aligned}$$

System size:
$$3060 \times 3060$$
 sites.
 $V_0 = 0$
 $\mu = -4.3 t$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

The generalized Dimitrova relation

$$\dot{S}_{i}^{y} + [\operatorname{div} \mathbf{J}^{y}]_{i} + \alpha_{i,i+y} J_{i,i+y}^{z} + \alpha_{i-y,i} J_{i-y,i}^{z} = 0.$$

For a homogeneous RSOC, where $[\operatorname{div} \mathbf{J}^{y}]_{i} = 0$, this implies that the total *z*-spin current has to vanish under stationary conditions. On the contrary, when α varies in space, a cancellation occurs between div \mathbf{J}^{y} and the last two terms, so that the stationarity condition $\dot{S} = 0$ does not imply the vanishing of J^{z} .

$$-\sum_{i} \dot{S}_{i}^{y} = \sum_{i} \left\{ \alpha_{i,i+y} J_{i,i+y}^{z} + \alpha_{i-y,i} J_{i-y,i}^{z} \right\}.$$

The Kubo formula

$$\sigma_{ij}^{sH} \equiv \frac{2}{N} \sum_{\substack{E_n < E_F \\ E_m > E_F}} \frac{Im \langle n | j_{i,i+y}^z | m \rangle \langle m | j_{j,j+x}^{ch} | n \rangle}{(E_n - E_m)^2 + \eta^2} \,.$$

Here, $\eta \rightarrow 0$ is a small regularization term which acts as an inverse electric-field turn-on time

The stationarity "detector"

$$\gamma = 2\sum_{ij} \alpha_{i,i+y} \sigma_{ij}^{sH}$$

 $\gamma = 0$ quantifies the "stationarity" of the solution

For $a_0 = 0.2 t$ and $a_1 = 0.8 t$, for a non-negligible range of chemical potential near the bottom of the band, a substantial σ^{sH} (red solid curve) is present while $\gamma = 0$ (blue dashed curve) \Rightarrow SHE in stationary conditions.

Relevance of states that are extended along y, while they are nearly localized along x due to the modulation of α .

This occurs for increasingly large density ranges by increasing the inhomogeneity of α

Results for the lattice model: with disorder

- Clean case: σ^{sH} ≠ 0, γ = 0 for bottom band energies, where electron states are localized along x but extendend along y
- Disorder case: σ^{sH} robust and almost insensitive in value
- Strong fluctuations due to finite size effects
- Disorder guarantees even more "stationarity" behavior with respect to the clean case even when $\eta = 0$ (electric field turn-on time)

Take-home message

A system with modulated RSOC can sustain a finite SHE in stationary conditions. the response of the charge current J_x^{ch} to the electric field along the modulation direction is strongly suppressed which can lead to large spin Hall angles eJ_y^z/J_x^{ch} for the striped system.

- Theory of spin current swapping and conditions to observe it. Future: interplay of extrinsic and intrinsic SOC.
- Temperature dependence of the spin Hall angle taking into account electron-phonon phonon-phonon scattering. Future: determine the full crossover behavior from low to high (room) temperature.
- SHE in modulated systems to achieve a strong response. Future: explore also spin current swapping.

Past and present coworkers

- Juan Borge
- Sergio Caprara
- Cosimo Gorini
- Marco Grilli
- Daniele Guerci
- Mirco Milletarì
- Peter Schwab
- Andrei Shelankov
- Ka Shen
- Götz Seibold
- Giovanni Vignale

Relevant papers

- PRB 92, 035201 (2015);
- PRL 115, 076602 (2015);
- EPL 112, 17004 (2015);
- PRB 82, 195316 (2010);
- Ann. Phys. (Berlin) 524, 153 (2012);

- PRL 109, 246604 (2012);
- PRL 112, 096601 (2014);
- PRB 90, 245302 (2014).

Thanks for your attention!