
Spin current swapping and spin Hall effect in a 2DEG

Roberto Raimondi

Dipartimento di Matematica e Fisica, Università Roma Tre
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My aim today

1 Spin-charge and spin-spin couplings: spin current swapping vs Hanle spin
Hall effect

2 Spin Hall effect due to skew-scattering by phonons

3 Spin Hall effect in systems with striped spin-orbit coupling



Spin current swapping: Lifshits and Dyakonov, PRL 103, 186601 (2009)

Spin-orbit coupling: Hso =−λ 2σ ×∇Vimp(r) ·p

v⃗

F⃗imp

B⃗impx

y

  

λ Effective Compton wavelength

Effective magnetic field
Bimp ∼ λ 2mFimp×v ∝ ẑ

Spin precesses around the z axis
yielding a x component

Primary spin current Jy
x

Secondary spin current Jx
y

Ja
i = κ

(
J i

a−δia ∑
l

J l
l

)
For dimensionless coupling κ = λ 2k2

F , k−1
F being the only relevant length



Spin current swapping as a scattering effect

Scattering amplitude in the presence of spin-orbit coupling

Spp′ = A+Bp̂× p̂′ ·σ
The density matrix changes upon scattering ρp→ ρp′ = Spp′ρpS

∗
pp′

Various processes

1 Standard scattering ∝ |A|2 + |B|2
2 Elliott-Yafet spin relaxation ∝ 2|B|2
3 Mott skew-scattering or spin-charge coupling (SCC) ∝ AB∗+A∗B
4 Spin current swapping (SCS) ∝ AB∗−A∗B

Comment

Spin current swapping more robust than skew-scattering because already exists
at the level of Born approximation when A real, B imaginary



How to observe the effect?

Non trivial question

In principle, generation of a primary spin current in response to the conjugated
spin vector potential Ay

x

In practice, application of an electric field Ex to drift a spin polarization Sy ,
Jy

x ∝ SyEx

v⃗

F⃗imp

B⃗impx

y

  

 

E⃗

v⃗

B⃗E

Bimp ∼ λ
2mFimp×v BE ∼−λ

2meE×v

However, the effective magnetic field generated by the electric field is equal and
opposite to the one generated by impurities (〈∇Vimp〉= E in the steady state)



The story can be more subtle

The effect of a magnetic field along y

Apply an eletric field Ex

Primary spin current Jy
x

The spin Hall effect generates Jz
y in response to Ex

The spin polarization along z precesses around the external magnetic field:
Jz

y → Jx
y

The ”precessed” spin current cannot be distinguished from the ”swapped”
one

  

v⃗ B⃗ext

x

y

The Hanle spin Hall effect



Diagrammatic theory of the Hanle spin Hall effect

A model calculation (See PRB 92, 035301 (2015))

2DEG with density of states N0 = m/2π and density n = k2
F /2π

Applied uniform magnetic field along x with Zeeman energy ∆

Standard white-noise disorder 〈V (r)V (r′)〉= 1
2πN0τ

with τ the scattering

time and D = v2
F the diffusion coefficient

Apply uniform electric field Ex and evaluate the Kubo formula

Charge and primary spin current

Jx = σxxEx , σxx = 2e2N0D

Jx
x = σ

x
xxEx , σ

x
xx =

(−e)

4π
∆τ

(a)

(b) (c)

(d) (e)

Note: the primary spin current is the algebraic sum of the number currents of
the two spin populations



”Hall” current

To lowest order in the spin-orbit coupling

side-jump-like diagrams (b and c) as those considered in the SHE (Tse
and Das Sarma PRL 96, 056601 (2006));

vertex corrections diagrams (d and e).

(a)

(b) (c)

(d) (e)

• spin-independent impurity potential

× spin-orbit coupling due to impurity
potential

Jx
x = σ

x
xxEx , σ

x
xx =

(−e)

4π
∆τ

Jy
y = σ

y
yxEx , σ

y
yx = enλ

2 ∆τ

1 + ∆2τ2



The effect of an exchange field and the Hanle SHE ( Ka et al. PRB 92,
035201 (2015) )

What about the ”apparent” swapping?

κ =
σ

y
yx

σx
xx

=−2k2
F λ

2 1

1 + ∆2τ2
→∆→0 −2k2

F λ
2 (1)

which is in agreement with LD’s prediction provided σx
xx 6= 0, which is not

the case in the present situation

The side-jump contribution to the SHE is

Jz
y = σ

z
yxEx , σ

z
yx = enλ

2 (2)

and σ
y
yx can be interpreted as the Hanle effect of the spin polarization

associated to the spin current in the SHE. Notice that the momentum
relaxation time τ enters the expression of the precession factor

The question arises about what happens when considering higher order, in
the impurity potential, diagrams? What about the HSHE from
skew-scattering?



Higher order terms and skew-scattering HSHE

Higher (third) order diagrams

• spin-independent impurity potential

× spin-orbit coupling due to impurity
potential

(b’)

(d’)

(c’)

(e’)

Key observations

New diagrams have the same structure as ”parent” diagrams with the
renormalization of the scattering amplitude v0→ v0 + δvR(A) ≡ vR(A)

vR(A) = v0∓ iπN0v
2
0

Diagrams can be classified in two classes:
1 ∝ vR + vA, scattering time renormalization, not present at this (third) order
2 ∝ vR −vA ∼AB∗+A∗B yields the skew-scattering contribution to the HSHE



How can we observe Spin Current Swapping (SCS)

SU(2) point of view

The potential in the spin-orbit Hamiltonian includes also the contribution due
to the applied electric field V (r) = Vimp(r) + er ·E

Effective spin-dependent vector potential Hso,E = p ·A, A = Aaσa/2

Only components Az
x = 2emλ 2Ey , A

z
y =−2emλ 2Ex

Covariant derivative in drift-diffusion equation (∇iO)a = ∂iO
a− εabcAb

i O
c

Spin current Ja
i =− eτ

m SaEi−D(∇iS)a + κ

(
J i

a−δiaJ
l
j

)
−θSH εijaJj

SCS with non-uniform conditions

Jx
x = (Jx

x )drift + (Jx
x )diff −κ(Jy

y − (Jy
y )drift )

Jy
y = (Jy

y )drift + (Jy
y )diff −κ(Jx

x − (Jx
x )drift )

Only the diffusion part of the primary spin current contributes to spin current
swapping



Suggested experimental set up

Inject a spin current from the FM
electrode (blue) into the PM system
(red)

Spin primary diffusion currents flow in
the horizonatal arm (Jy

x ) and vertical
arm (Jy

y )

Spin secondary current Jx
y flows in the

vertical arm

Sx spin polarization accumulates at
the ends of the vertical arm with
opposite sign and can be detected
either by ISHE or Faraday rotation

J
x
y Jy

J
x
y

y

Jy
y

J
x

y

x

y

Ic H y



Why phonon skew scattering?

Spin Hall
angle

θ
sH =

eσ sH

σ

θ

π − θ

θ

π − θ

θ

π − θ

θ

π − θ

T = 0

σ sH
sj = constant

σ sH
ss = constant×mobility ∝ σ

T 6= 0

τimp → τe−ph

σ sH
ss ,σ ∼ 1/T

Conventional analysis (Is it enough?)

in high mobility samples skew scattering dominates, θ sH T-independent

On the contrary, if θ sH ∼ T, the side-jump mechanism dominates

Vila et al. PRL 99, 226404 (2007); Niimi et al. PRL 106, 126601 (2011); Isasa et al. PRB 91, 024402 (2015); Hankiewicz et al. PRL 97,

266601 (2006).



Review of the Debye model for electron-phonon coupling

Start from elasticity theory with displacement field u(r,t)

After quantization introduce the phonon field

φ̂(r) = i∑
k

√
vsk

2V

(
b̂ke

ik·r−h.c.
)
, φ̂(r) = vs

√
ρ∇ ·u(r), ρ : mass density

Replace the impurity potential with the phonon potential

Vimp(r)→ Vph(r) = g φ̂(r), g : electron−phonon coupling

Average over phonon configurations taking anharmonic cubic terms

Han =
Λ

3!

∫
dr φ̂

3(r)

where Λ =−γ/vs
√

ρ is related to the Grüneisen parameter γ ∼ 2−3



Diagrams

Dashed line = impurity
average

Wavy line = phonon
propogator

×= impurity potential

•= phonon potential

filled square = spin-orbit
coupling

gray dot =
three-phonon term

(a1)

(b1) (b2) (b3)

(c1) (c3)(c2)

(a2)



High-temperature regime

Debye temperatures in metals: TD = 165 K for Au, TD = 240K for Pt and Ta
For T > TD ,

phonon dynamics becomes irrelevant, and phonon potential behaves
almost as a static one as for the impurity potential

phonon averages can be done semiclassically with the equipartition
theorem

〈φ̂(r1)φ̂(r2)〉= kTδ (r1− r2)

〈φ̂(r1)φ̂(r2)φ̂(r3)〉=−Λ(kT )2
δ (r1− r2)δ (r1− r3)

The Keldysh technique in the high-T regime confirms this result

Λg3

4

∫
4

[DR
14D

K
24D

K
34 +DK

14D
R
24D

K
34 +DK

14D
K
24D

R
34]∼−3Λg3(kBT )2

by using

DK (k,ω) =−i
h̄ωk

2
coth

(
β h̄ωk

2

)
2π [δ (ω−ωk) + δ (ω + ωk)]→∼ T



Naive derivation ( Gorini et al. PRL 115, 076602 (2015))

Correspondence impurity-phonons

niv
2
0 → g2kT =

1

2πN0τe−ph

niv
3
0 → −3Λg3(kT )2 =

1

2πN0τe−ph
(−3kTgΛ)

Using the correspondence with impurity

Skew-scattering from impurities

σ
sH
ss,imp =

λ 2k2
F

4

en

m
2πN0v0τimp

scales as conductivity ∼ τimp

Skew-scattering from phonons

σ
sH
ss,ph =−λ 2k2

F

4

en

m

h̄Λ

g
∼ σ

sH
ss,imp

γ

εF τimp
∼ 0.1σ

sH
ss,imp

is T -independent, while σ ∼ τe−ph ∼ T−1



Temperature dependence of the Spin Hall Angle

New point of view

σ ∼ T−1 is T -dependent via e-ph
scattering

σ sH
ss is T -independent at high T

Combine with Rashba ( ∆ ) spin
splitting

θ
sH =

1

σ

σ sH
int + σ sH

ext

1 + τEY /τDP

Diffusive ∆� T

σ
sH
int ∼ T−2,τEY ∼ T−1,τDP ∼ T

From weak (darker) to stronger (lighter)
σ sH

ext/(e/8π)

0 5 10 15 20 25
kB T/∆

0.00

0.05

0.10

0.15

0.20

θs
H

 (
a
.u

.)

1
0.1
0.01
0.001
0.0001

Diffusive

Ballistic

Warnings and future perspectives

higher anharmonic terms may give a T-behavior of σ sH
ss opposite to σ

intermediate temparature regime T ≤ TD needs to be studied

non-parabolic terms may affect the T-behavior of side-jump (Gorini 2015)



The disordered Rashba model and the Spin Hall Effect: brief review

E. I. Rashba, Sov. Phys. Solid State 2, 1109 (1960); Bychkov and Rashba,
JETP Lett. 39, 78(1984); J. Phys. C: Solid State Phys. 17, 6093 (1984).

H =
p2

2m
+ α(py σ

x −px σ
y ) +V (r)

Intrinsic SHE jzy = σ sHEx = (e/8π)Ex , Sinova et al. PRL 92, 126603
(2004)

Ec

Ev

z
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so
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z
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py
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Disorder introduces spin relaxation

τDP =
L2

so

D
= (2mα)2D = 2m2

α
2v2

F τ

Dyakonov and Perel, SOv. Phys.-Solid State 13, 3023 (1971)

However, ”subtle is the Lord” and there can be no
SHE in static and uniform conditions

∂ts
y + ∇ · jy =−2mα jzy

Dimitrova, PRB 71, 245327 (2005).
although ⇒SHE still possible at edges, in transient
regime ( Mishchenko et al. PRL 93, 226602
(2004); Raimondi et al. PRB 74, 035340 (2006)),
with random SOC ( Moca et al. PRB 77, 193302
(2008); Dugaev et al. PRB 82, 121310 (2010);
Dyrdal et al. Acta Phys. Pol. A 127, 499 (2015))



The mechanism leading to a vanishing spin current

Question

Can we taylor the SOC so to have SHE in static and uniform conditions?

With a space-dependent α, the Dimitrova constraint no longer implies the
vanishing of the spin current

The standard vanishing occurs due to an exact compensation between two
terms:
⇒ diffusion contribution from non-abelian SU(2) covariant derivative
⇒ drift contribution from Lorentz-like force due to SU(2) magnetic field

jzy = σ
sHEx −D(−ε

zxy 2mαsy )

It may be possible to unbalance such compensation so to have a finite spin
current



The inhomogeneous Rashba model ( Götz et al. EPL, 112, 17004 (2015))

General idea

Single-interface model

α → α(x) = θ(x)α+ + θ(−x)α−

Interpolating solution

Sy (x) = θ(x)
(
S0,+ + δ s+e−x/L+

)
+ θ(−x)

(
S0,−+ δ s−ex/L+

)
,

Main message

Non-zero spin current exponentially
localized at the interface

z"

y"x"

(a)"

Jy
z ~ Sy

z"

y"x"

(c)"

Jy
z ~ Ex

α+"

α�"

Sy
Jy
z

(d)"

x"

y"

Jx ~ Ex

Ex"

d"

w"

Jyz"

STO"

LAO"

(b)"

!px ~ Ex"

y"

x"

(e)"

Strong Rashba coupling in LAO/STO Nitta et

al. PRL 78, 1335 (1997); Caviglia et al. PRL 104, 126803 (2010); Hurand

et al. Sci. Rep. 5, 12751 (2015)



The lattice model

Why the lattice? No need for a small expansion parameter ( Nomura et al.
PRB 72, 165316 (2005))

H = ∑
ijσ

tijc
†
iσ cjσ +∑

iσ

(Vi −µ)c†
iσ ciσ +HRSO ,

Disorder distrubution −V0 ≤ Vi ≤ V0

HRSO = −i ∑
iσσ ′

αi ,i+x

[
c†

iσ τ
y
σσ ′ci+x ,σ ′ − c.c.

]
+ i ∑

iσσ ′
αi ,i+y

[
c†

iσ τ
x
σσ ′ci+y ,σ ′ − c.c.

]

The Stripes modulation

αi ,i+x =
1

2

[
a0 +a1 + (a0−a1)sgn(sin

2π ix
2L

)

]
αi ,i+y = αi ,i+x ,

Rashba SOC on a lattice

-5 -4 -3 -2 -1 0
chem. pot.

0

0.5

1

1.5

2

2.5

σ
sH

, 
γ 

 [
1

/8
π

]
10 20 30x

0

0.002

0.004

0.006

n
(x

)

10 20 30
0

0.2

0.4

0.6

0.8

1

α
(x

)

d w

σ
sH

=γ (hom.)

σ
sH

 (stripe)

γ (stripe)

System size: 3060×3060 sites.
V0 = 0
µ =−4.3t



The generalized Dimitrova relation

Ṡy
i + [divJy ]i + αi ,i+yJ

z
i ,i+y + αi−y ,iJ

z
i−y ,i = 0 .

For a homogeneous RSOC, where [divJy ]i = 0, this implies that the total
z-spin current has to vanish under stationary conditions. On the contrary, when
α varies in space, a cancellation occurs between divJy and the last two terms,
so that the stationarity condition Ṡ = 0 does not imply the vanishing of Jz .

−∑
i

Ṡy
i = ∑

i

{
αi ,i+yJ

z
i ,i+y + αi−y ,iJ

z
i−y ,i

}
.

The Kubo formula

σ
sH
ij ≡

2

N ∑
En<EF
Em>EF

Im〈n|jzi ,i+y |m〉〈m|jch
j ,j+x |n〉

(En−Em)2 + η2
.

Here, η → 0 is a small regularization term which
acts as an inverse electric-field turn-on time

The stationarity ”detector”

γ = 2∑
ij

αi ,i+y σ
sH
ij

γ = 0 quantifies the
”stationarity” of the solution



Results for the lattice model: no disorder
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For a0 = 0.2t and a1 = 0.8t, for a
non-negligible range of chemical potential
near the bottom of the band, a substantial
σ sH (red solid curve) is present while γ = 0
(blue dashed curve) ⇒ SHE in stationary
conditions.
Relevance of states that are extended along
y , while they are nearly localized along x
due to the modulation of α.
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This occurs for increasingly large density
ranges by increasing the inhomogeneity of α



Results for the lattice model: with disorder
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Clean case: σ sH 6= 0, γ = 0 for
bottom band energies, where
electron states are localized
along x but extendend along y

Disorder case: σ sH robust and
almost insensitive in value

Strong fluctuations due to finite
size effects

Disorder guarantees even more
”stationarity” behavior with
respect to the clean case even
when η = 0 (electric field
turn-on time)

Take-home message

A system with modulated RSOC can sustain a finite SHE in stationary
conditions. the response of the charge current Jch

x to the electric field along the
modulation direction is strongly suppressed which can lead to large spin Hall
angles eJz

y /J
ch
x for the striped system.



Conclusions and Perspectives

Theory of spin current swapping and conditions to observe it. Future:
interplay of extrinsic and intrinsic SOC.

Temperature dependence of the spin Hall angle taking into account
electron-phonon phonon-phonon scattering. Future: determine the full
crossover behavior from low to high (room) temperature.

SHE in modulated systems to achieve a strong response. Future: explore
also spin current swapping.
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